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Abstract

An indirect adaptive and reconfigurable flight control system is developed. The

three-module controller consists of 1) a system identification module, 2) a parameter

estimate smoother, and 3) a proportional and integral compensator for tracking

control. Specifically: 1) The identification of a linear discrete-time control system’s

open-loop gain is addressed. The classical Kalman filter theory for linear control

systems is extended and the control system’s state and loop gain are jointly estimated

on-line. Explicit formulae for the loop gain’s estimate and estimation error covariance

are derived. The estimate is unbiased and the predicted covariance is reliable. 2) An

adaptive smoother is developed to reduce the fluctuations automatically in the gain

estimate, and bursting, caused by instances of poor excitation. 3) Special attention is

given to the design of a proportional and integral tracking controller. The outputs of

the system identification and gain smoother modules are used to adjust the tracking

controller’s gain continuously in order to compensate for a possible reduction in the

loop gain due to control surface area loss, thus achieving the benefits of adaptive and

reconfigurable control. The performance of the adaptive and reconfigurable controller

in the face of a simulated control surface failure is examined in carefully designed

experiments. The adaptive controller developed in this dissertation and illustrated

in a flight control context is applicable to a wide range of control problems.

xviii



Adaptive and Reconfigurable Flight Control

I. Introduction

Feedback is used to address the deleterious effects brought about by the un-

structured environment in which the controlled plant is operating. This includes

plant parameter uncertainty, unmodeled dynamics and input disturbances. At the

same time, the benefits of feedback control are limited by actuator saturation and

sensor noise, in particular when high gain feedback control is used [11].

System identification fits well into the feedback control paradigm for it allows

us to acquire the estimates of the plant’s parameters from measurements on the

system’s inputs and outputs using algorithms and software, but without adding

extra hardware, i.e., sensors or actuators [13]. Thus, the uncertainty is reduced

and lower gain feedback might be used. Unfortunately, system identification, which

entails the estimation of all the (linear) plant’s parameters, resides in the realm of

nonlinear filtering. Moreover, system identification for adaptive and reconfigurable

flight control requires a) the accurate and reliable estimation of the aircraft’s stability

and control derivatives with on-line operation, b) accurate and reliable estimation

at low SNR, c) the use of a small sample, and d) no human intervention.

In the statistical linear regression paradigm, static system identification of

the parameters of the dynamical system affords reliable real-time operation [19].

Static system identification is also well suited to aircraft parameter estimation since

measurements of aircraft states and state rates are readily available [3, 5, 6].

It is shown in this dissertation that, in linear control systems, and provided that

the dynamics (A) matrix is known, the exclusive estimation of the critical parameters

of the control (B) matrix only is also reducible to a problem in linear regression and
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therefore is amenable to linear analysis. Hence, a rigorous, and unbiased real-time

estimate of the parameters of the control matrix and a reliable predicted estima-

tion error covariance can be obtained. The classical Kalman filter theory for linear

control systems is extended and the control system’s state and loop gain are jointly

estimated. Explicit formulae for the loop gain’s estimate and predicted estimation

error covariance are obtained. In this dissertation, this approach is pursued. A sim-

plified (single input) version of this problem is addressed and an algorithm for the

estimation of a single-input flight control system’s critical loop gain parameter is

developed [26]. The inclusion of a “forgetting factor” into this basic algorithm, or

the employment of a sliding window, will afford the real-time identification of a time-

varying parameter - the plant’s open-loop gain. Thus, adaptive and reconfigurable

flight control is possible.

Although the estimation problem addressed in this dissertation is amenable to a

rigorous analysis and solution, the end-to-end adaptive control problem is nonlinear

due to the presence of an unknown plant parameter. Therefore, we do not have

the benefit of a Separation Theorem. Hence, an adaptive smoother is developed in

this dissertation to reduce the fluctuations automatically in the parameter estimate

caused by measurement noise, and bursting, caused by instances of poor excitation,

prior to the use of the parameter estimate in the controller. As we move from window

to window, the fluctuations in the parameter estimate are further exacerbated by

the presence of modeling error. Hence the importance of the parameter estimate

smoother.

Furthermore, special attention is given to the design of a proportional and inte-

gral tracking controller. The outputs of the system identification and gain smoother

module are used to adjust the tracking controller’s gain continuously.

Thus, an indirect adaptive and reconfigurable control system is developed. The

controller consists of three modules: 1) A system identification module, 2) a parame-

ter estimate smoother, and 3) a proportional and integral compensator for tracking

2
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Figure 1. Adaptive and Reconfigurable Flight Control System

control. The architecture of an indirect adaptive and reconfigurable flight control

system which incorporates the on-line loop gain identification algorithm, adaptive

loop gain estimate smoother, and tracking controller developed in this dissertation

is shown in Figure 1.

1.1 Assumptions

The plant dynamics are assumed to be known. We proceed under the assump-

tion that the loss in elevator surface area does not significantly change the overall

aircraft dynamics. For this reason, the identification of the aircraft’s dynamics (A)

matrix parameters is not undertaken and the focus is on the control matrix B, viz.,

the identification of the open-loop plant’s gain, a reduction of which models the

degree of failure, i.e., control surface area loss.

The system order is assumed known. Model order determination is not ad-

dressed in this dissertation for it is not a dominant issue in flight control [21]. The

“short-period” aircraft dynamics approximation is used and the very low frequency
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Phugoid dynamics can be neglected [18, 21]. This is so because the period of the

Phugoid oscillation is about sixty seconds whereas the period of the short-period

oscillation is about one second. Moreover, since this research deals with inner loop

control and control surface failure, the control time horizon is short. This is to

prevent aircraft departure, in particular when the open-loop plant is not stable and

feedback control is used for stabilization. Thus, the time scale of interest for es-

timation and control is rather short, and neglecting the Phugoid is justified. The

bandwidth of the actuator is sufficiently high and therefore the actuator and the

aircraft’s “short-period” dynamics are separated, and a first-order actuator model

is satisfactory. These assumptions are validated in the simulation experiments, in

which the unmodeled high frequency actuator, low frequency Phugoid dynamics, and

parametric uncertainty, are included.

The aircraft model is assumed to be statically unstable to apply to modern

fighter aircraft. Our three-module controller can also handle a stable aircraft plant,

since the tracking controller is easier to design for a stable plant.

The benefit accrued from using a reduced order plant model for model based

control design: When dealing with the short-period approximation of an aircraft,

both the α (angle of attack) and q (pitch rate) signals are available for feedback,

as is the elevator deflection δe, and thus full-state feedback control is possible - see,

e.g., Figure 3 in the sequel.

1.2 System Identification Problem Statement

Indirect adaptive control relies on system identification. The plant truth model

of the system identification algorithm is the linear discrete-time single-input multiple-
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output stochastic control system (as shown in Figure 1)

xk+1 = Axk +Kbuk + Γwk, E(wkw
T
k ) = Q, xk ∈ <n (1)

x0 = N(x0,P0xx) (2)

K = N(K0, p0KK) (3)

yk+1 = Cxk+1 (4)

zk+1 = yk+1 + vk+1, E(vk+1v
T
k+1) = R (5)

where

k = 0, 1, ....,N − 1

In the special case of a single output, the matrix C is a row vector cT and the

measurement Eq. (5) is simplified to

zk+1 = yk+1 + vk+1, vk+1 = N(0,σ
2) (6)

In the specific flight control application under consideration, the states α and q

denote the aircraft’s angle of attack and pitch rate, respectively, and the control

signal δe is the elevator deflection.

The dynamics matrix A, the control vector b, the observation matrix C and

the vector Γ are all known. The process noise intensity, Q, and the sensor noise

intensity, R (or σ2), are also known. In addition, the prior information specified in

Eqs. (2) and (3) is provided. For an unfailed plant (aircraft) the loop gainK = 1 (by

definition), until a failure at time tf reduces the control derivative, and K = K1 < 1

thereafter [3].

For a multiple-input system, the second term in the right-hand side of Eq. (1)

becomesBKuk, whereB is the control matrix,K is the loop gain matrix and uk is the

input vector. In this dissertation we will deal with the single-input multiple-output

stochastic control system only, since our aircraft plant is a single-input multiple-
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output model. However, the methodology in this dissertation can be applied to a

multiple-input multiple-output plant.

The objective is to identify the scalar loop gain K from the input sequence

u0, u1, ...., uN−1 and the recorded measurements, z1, z2, ...., zN . A rigorous system

identification algorithm is developed. The classical Kalman filter theory for linear

control systems [4, 5, 6, 7] is extended and the control system’s state and loop gain

are jointly estimated. Explicit formula for the loop gain’s estimate and predicted

estimation error covariance are derived. The estimate of the system’s state and

the covariance of the state estimation error are also obtained. A sampling rate of

100Hz is used and in our estimation algorithm the continuous-time plant dynamics

are discretized accordingly.

1.3 Adaptive and Reconfigurable Control System

The proposed three-module adaptive and reconfigurable control system is shown

in Figure 1. The pilot inputs a pitch rate command, qc, which is the reference signal

for the adaptive controller. The commanded input is passed through a low pass

prefilter and into a proportional (P) or proportional and integral (PI) controller de-

signed to yield good tracking performance. The identification algorithm, i.e., the

modified Kalman filter, is fed with the noise corrupted measurements of the states

of the plant, αm and qm, and the input to the plant, δe. The bα, bq and bK estimates

of α, q and K, respectively, are provided by the modified Kalman filter/system iden-

tification module at each time sample. The bα, bq and δe (elevator deflection angle)

are fed back and summed with the reference signal r in the proportional and in-

tegral (linear) tracking compensator. The system identification module outputs an

estimate bK of the loop gain and computes the loop gain estimation error variance.

This information is fed to an adaptive smoother module which calculates a smoothed

estimate bKs of bK. The filtered loop gain estimate ( bKs) is fed back into the forward

path after the summing junction of the states and signal r, but before the actuator,

6



to compensate for the changing open-loop gain K due to plant failure, i.e., a loss

in control surface area. Thus, the control signal δec which is the input to the actu-

ator is formed from the feedback filtered state measurements, the reference signal,

and the output of the system identification and adaptive smoother modules. The

indirect adaptive and reconfigurable control design methodology developed in this

dissertation and illustrated in a flight control context is applicable to a wide range

of control problems.

The plant model is representative of the longitudinal dynamics of an F-16

class aircraft. The open loop plant is unstable and feedback control is used for

stabilization. The first order actuator model used herein is representative of the

elevator of an F-16 class aircraft.

This dissertation is organized as follows. The basic concept of the system iden-

tification is presented in Chapter 2. The system identification algorithm for loop gain

estimation is provided in Chapter 3. The adaptive loop gain smoothing algorithm is

developed in Chapter 4 and the design of the linear tracking controller is discussed

in Chapter 5. The aircraft model is discussed in Chapter 6. The experimental setup

and the simulation results are presented in Chapter 7, followed by conclusions in

Chapter 8.
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II. System Identification

2.1 Introduction

This chapter provides general background knowledge of relevant and applicable

system identification techniques. Both the classical and digital signal processing

based method are explained and examples are given. Also, some concerns and design

considerations related to system identification are addressed.

When modeling a system, there are two approaches to be considered, the de-

ductive and empirical approaches [22]. With deductive modeling, the laws and equa-

tions found in physics and engineering are used to derive the proper model. With the

empirical approach, i.e., statistical system identification, least squares and Kalman

filter estimates are used to form a model for predicting the dynamics of the system.

System identification has more applications than just for modeling purposes.

It is also a useful technique for model order reduction of a plant or compensator, for

measuring or estimating parameters, and for real time adaptive control.

One of the challenges that needs to be addressed is modeling error, especially

when the real order n of a best model (by some specified criterion) for the system is

not known. Additional error sources are disturbances such as process and measure-

ment noises. When determining the unknown parameters of a higher order model,

the excess parameters of the physical system should equal zero. However, this does

not happen because of noise. Rather, the critical parameter estimates are biased.

Over-modeling is not advisable in system identification. Although it may seem log-

ical to over-model a system, the extra parameters would be redundant and would

make the determination of the critical system’s parameters impossible. Therefore, it

is better to under-estimate the order of the unknown system than to over-estimate

it. Under-modeling requires determining values for the parameters that yield the

best fit over a desired bandwidth.
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2.2 Frequency Domain-Based Continuous-Time System Identification

Discrete-time system identification is well suited for a digital signal processing-

based algorithm. Special attention needs to be given to continuous-time system

identification.

Consider the continuous-time transfer function [22]

H(s) =
y(s)

u(s)
=

b1s
n−1 + b2sn−2 + ....+ bn−1s+ bn

sn − a1sn−1 − a2sn−2 − ....− an−1s− an . (7)

If we chose the input to be

uk(t) = sinωkt, 0 ≤ t (8)

then the output is the phasor

yk(t) = (Ak + jBk) sinωkt

=
q
A2k +B

2
k sin(ωkt+ φ)

= A sin(ωkt+ φ) (9)

where

φ = Arc tan(
Bk
Ak
) . (10)

Letting s = jω and substitution into H(s)

H(s) =
y(s)

u(s)
= Ak + jBk

=
b1(jωk)

n−1 + b2(jωk)n−2 + ....+ bn−1jωk + bn
(jωk)n − a1(jωk)n−1 − a2(jωk)n−2 − ....− an−1(jωk)− an . (11)

9



Cross-multiplying and reducing creates a linear equation from which the unknown

coefficients ai and bi can be obtained.

Ak + jBk =
nX
i=1

(Ak + jBk)(jωk)
−iai +

nX
i=1

(jωk)
−ibi (12)

Expanding the equation gives

Ak + jBk =
1

j
(Ak + jBk)(

1

ωk
a1 − 1

ω3k
a3 +

1

ω5k
a5 − 1

ω7k
a7 + ...)

+
1

j
(
1

ωk
b1 − 1

ω3k
b3 +

1

ω5k
b5 − 1

ω7k
b7 + ...)

+(Ak + jBk)(− 1
ω2k
a2 +

1

ω4k
a4 − 1

ω6k
a6 + ...)

+(− 1
ω2k
b2 +

1

ω4k
b4 − 1

ω6k
b6 + ...). (13)

Multiplying both sides by j and expanding, we are able to match the real and

complex portions of the right hand side the equation with the left. This will allow

us to solve for the unknown coefficients:

−Bk = Ak(
1

ωk
a1 − 1

ω3k
a3 +

1

ω5k
a5 − 1

ω7k
a7 + ...)

+Bk(
1

ω2k
a2 − 1

ω4k
a4 +

1

ω6k
a6 − ...)

+(
1

ωk
b1 − 1

ω3k
b3 +

1

ω5k
b5 − 1

ω7k
b7 + ...)

Ak = Bk(
1

ωk
a1 − 1

ω3k
a3 +

1

ω5k
a5 − 1

ω7k
a7 + ...)

+Ak(− 1
ω2k
a2 +

1

ω4k
a4 − 1

ω6k
a6 + ...)

+(− 1
ω2k
b2 +

1

ω4k
b4 − 1

ω6k
b6 + ...). (14)

For an nth order SISO system, the control system is specified by 2n parameters.

For this reason, we chose n sinusoidal test functions, each one producing 2 equations.
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2.2.1 Second Order Example. Given the transfer function [22]

H(s) =
ω2n

s2 + 2ζωns+ ω2n
.

Knowing that we can measure the output phasor, the unknown parameters, ζ and

ωn, can be solved using the technique described in Eqs. (11)-(14):

A+ jB =
ω2n

−ω2 + 2ζωnjω + ω2n
.

Cross-multiplying and simplifying yields

(A+ jB)(ω2n − ω2 + 2ζωnjω) = ω2n

which implies

(A− 1)ω2n − 2Bωζωn −Aω2 + j(Bω2n + 2Aωζωn −Bω2) = 0.

Separating the imaginary and real terms yields

(A− 1)ω2n − 2Bωζωn = Aω2

Bω2n + 2Aωζωn = Bω2.

Solving for natural frequency and damping ratio, the unknown parameters, yields

ωn =

r
A2 +B2

A2 +B2 − Aω

ζ = − B

2
p
(A2 +B2 − A) (A2 +B2) .

Recall, A and B are coefficients of the output phasor and can be directly measured.
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2.3 Stochastic Analysis

A goal of system identification is to find a “best fit” model of the system

being analyzed [19]. The stochastic analysis acknowledges the noise in the measured

input and output data. Using a least-squares approach, the sum of the squared

errors between the true output of the model and the measured output is minimized.

Using the least-squares approach and stochastic modeling, large errors and poor

measurements are given less weight than more accurate measurements. The use of

digital signal processing requires that our once-continuous system is now discretized.

In the case of a dynamic system, a system output can be described as [8, 19, 22]

yk+1 = a1yk + a2yk−1 + ....+ anyk−n+1 + b1uk + b2uk−1 + ....+ bmuk−m+1 (15)

and the measurement equation as

zk+1 = yk+1 + vk+1, vk+1 ∈ N(0, σ2) (16)

or

yk = zk − vk (17)

which may contain process and disturbance noise. Therefore,

zk+1 − vk+1 = a1(zk − vk) + a2(zk−1 − vk−1) + ....+ an(zk−n+1 − vk−n+1)
+b1uk + b2uk−1 + ....+ bmuk−m+1. (18)

By defining a noise vector, eVk+1, we can rearrange the above equation as
zk+1 = a1zk + a2zk−1+ ....+ anzk−n+1+ b1uk + b2uk−1+ ....+ bmuk−m+1+ eVk+1 (19)
where eVk+1 , vk+1 − a1vk − a2vk−1 − ....− anvk−n+1. (20)

12



Now, the measurement equation is defined as

Z = HΘ+ eV , E(eV eV T ) = R (21)

where

Z ,


zk+1

zk+2
...

zk+N+1


(N+1)×1

, Θ ,



a1
...

an

b1
...

bm


(m+n)×1

, eV ,


eVk+1eVk+2
...eVk+N+1


(N+1)×1

(22)

and

H ,


zk zk−1 · · · zk−n+1 uk uk−1 · · · uk−m+1

zk+1 zk · · · zk−n+2 uk+1 uk · · · uk−m+2
...

...
. . .

...
...

...
. . .

...

zk+N zk+N−1 · · · zk+N−n+1 uk+N uk+N−1 · · · uk−m+N


(N+1)×(m+n)

.

(23)

In this notation, m is the number of measurements and n is the number of

parameters to be identified. We can now find the Least Squares estimate, bΘ, and
the estimation error covariance matrix P [2, 22].

The Least Square estimate is

bΘ = (HTH)−1HTZ (24)

and the parameter estimation error covariance is

P = σ2(HTH)−1. (25)
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So far, the measurement and/or process noise has not been taken into account

properly. A more rigorous method would be to solve for the parameter estimates

using a weighted pseudo-inverse to account for noise in the system. The minimum-

variance estimate is [4, 5]:

bΘMV = (H
TR−1H)−1HTR−1Z (26)

and the minimum—variance estimation error is

Pmv = (H
TR−1H)−1 (27)

where R is the weighting matrix.

Eq. (24) calculates the parameter estimates using an unweighted pseudo-

inverse. This is possible when the weighting matrix, R, is assumed to be a scaled

unity matrix, viz., when cross-correlation does not exist and all scalar noises have

the same variance. When this assumption is made, R = σ2I, where I is the identity

matrix and σ2 the variance of the noise, drops out of the parameter estimate equation

and only σ2 enters the calculated parameter estimation error covariance matrix.

2.4 Calculating R

R is affected by the noise created by our sensors when measuring the output

of the system. Many times, R is represented as a diagonal matrix with σ2 along

the diagonal and zeros in the off-diagonal spaces, which implies no cross-correlation.

This is often deemed adequate, knowing that each output has its own independent

sensor to take measurements. In truth, the measurement noises are correlated and

the sensors are coupled to some extent [22], and this causes off-diagonal terms in the

R matrix. Earlier, in Eq. (5), we described R as being the expected value of the

measurement noise times the transpose of that noise. It is shown from Eq. (22) that

14



the measurement noise is actually a noise vector, eV . This noise vector now produces
off-diagonal terms in the R matrix.

The matrix R, using a two parameter estimation problem example, is now

defined as

R = E(eV eV T ) = E



eVk+1
...eVk+N

 ³ eVk+1 · · · eVk+N ´ 

= E




vk+1 − a1vk
vk+2 − a1vk+1

...

vk+N − a1vk+N−1


³
vk+1 − a1vk vk+2 − a1vk+1 ... vk+N − a1vk+N−1

´´

= E


(vk+1 − a1vk) (vk+1 − a1vk) (vk+1 − a1vk) (vk+2 − a1vk+1) · · ·
(vk+2 − a1vk+1) (vk+1 − a1vk) (vk+2 − a1vk+1) (vk+2 − a1vk+1) · · ·

...
...

. . .



=



σ2 + a2σ2 −aσ2 0 0 · · ·
−aσ2 σ2 + a2σ2 −aσ2 0 · · ·
0 −aσ2 σ2 + a2σ2 −aσ2 0

0 0 −aσ2 σ2 + a2σ2 · · ·
...

... 0 −aσ2 . . .


. (28)
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Finally,

R = σ2


1 + a2 −a 0 · · ·
−a 1 + a2 −a · · ·
0 −a 1 + a2 · · ·
...

...
...

. . .

 (29)

= σ2 eR. (30)

Now, Eqs. (26) and (27) become

bΘMV = (HT eR−1H)−1HT eR−1Z (31)

Pmv = σ2(HT eR−1H)−1. (32)

Note that the intensity of noise, σ, does not affect the parameter estimate bΘMV .

In summary, the parameters of an unknown dynamic system can be identified

by using a sinusoidal test function as an input to that unknown plant and observing

the phasor output. However, care must be taken not to over-model the unknown

plant. When noise is included in the system dynamics, a stochastic analysis of the

measurement situation must be performed to account properly for the effects of noise.

A discrete-time plant model was also discussed and the input and measurement

equations, now with a noise term, were defined . It was then shown how the strength

of the noise can be represented as a weighting matrix, R, and applied to the least

squares formula, to provide more accurate parameter estimates.
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III. Stochastic Modeling

A Kalman filter is a data processing algorithm that uses all available data,

such as plant model, initial conditions, and statistical descriptions of any biases,

measurement noise or process noise [15, 16]. This information is fed into the propa-

gate/update algorithm which then optimally derives an estimated value for the sys-

tem’s state in a way that minimizes estimation error variance. The rigorous Kalman

filtering paradigm for linear systems can be extended to provide an estimate of the

control matrix B. Our main result is the following system identification algorithm.

3.1 System Identification Algorithm

Since digital signal processing is used, a discrete-time dynamical model consid-

ered in this work is used. The loop gain system identification algorithm is developed

by Sillence [26] and is concisely presented in Theorem 1.

Theorem 1 Consider the following linear estimation problem. The linear dynamical

system is

xk+1 = Axk +Kbuk + Γwk, E(wkw
T
k ) = Q, k = 0, 1, ...., N − 1 (33)

the prior information is

x0 ∈ N(x0, P0x) (34)

K ∈ N(K0, P0K ) (35)

the output signal

yk+1 = Cxk+1 (36)
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and the observation equation is

zk+1 = yk+1 + vk+1, E(vk+1v
T
k+1) = R. (37)

The matrices A, b, C and Γ are known. The respective Gaussian zero mean process

noise and measurement noise covariance matrices, Q and R, are also known. The

open-loop gain K is not known.

Denote by bxk and bKk the respective estimates of the state xk and the loop gain

K at time k, given the measurements record z1, ..., zk, the input sequence u0, ..., uk−1,

and the prior information on x0 and K. The covariance of the estimation error of

the

 xk

K

 vector is denoted by the partitioned matrix Pk =

 Pkxx pkxK

pTkxK pkKK

.
Initially, set

bx0 , x0, bK0 , K0, P0xx , P0x, p0KK , P0K , p0xK , 0. (38)

Then, for k = 0, 1, ..., N − 1, the state and gain estimates are updated as follows

bxk+1 = Abxk + bKkbuk +Kx(zk+1 − CAbxk − bKkCbuk) (39)bKk+1 = bKk +KK(zk+1 − CAbxk − bKkCbuk) (40)

where the Kalman gains

Kx = {APkxxATCT + uk[ApkxK (Cb)T + b(CApkxK )T ]
+u2kpkKKb(Cb)

T + ΓQΓTCT} × {CAPkxxATCT

+uk[CApkxK (Cb)
T + (Cb)(CApkxK )

T ]

+u2kpkKK (Cb)(Cb)
T + CΓQΓTCT +R}−1 (41)
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and

KK = [(CApkxK )
T + ukpkKK (Cb)

T ]× {CAPkxxATCT

+uk[CApkxK (Cb)
T + (Cb)(CApkxK )

T ]

+u2kpkKK (Cb)(Cb)
T + CΓQΓTCT +R}−1. (42)

Furthermore, the estimation error covariances are

Pk+1xx = {[APkxxAT + uk(ApkxKbT + bpTkxKAT )]
+u2kpkKKbb

T + ΓQΓT ]−1 + CTR−1C}−1 (43)

pk+1KK = pkKK − [(CApkxK )T + ukpkKK (Cb)T ]× {CAPkxxATCT

+uk[CApkxK (Cb)
T + (Cb)(CApkxK )

T ]

+u2kpkKK (Cb)(Cb)
T + CΓQΓTCT +R}−1

×[(CApkxK) + ukpkKK (Cb)] (44)

pk+1xK = ApkxK + ukpkKKb− {APkxxATCT + uk[ApkxK (Cb)T + b(CApkxK )T ]
+u2kpkKKb(Cb)

T + ΓQΓTCT}
×{CAPkxxATCT + uk[CApkxK (Cb)T + (Cb)(CApkxK )T ]
+u2kpkKK (Cb)(Cb)

T + CΓQΓTCT +R}−1

×[(CApkxK ) + ukpkKK (Cb)]. (45)

¤
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3.2 Proof of Theorem 1

We shall require the complete Matrix Inversion Lemma (MIL)

Lemma 2 Assume the relevant matrices are compatible and invertible. Then

¡
A1 − A2A−14 A3

¢−1
= A−11 +A−11 A2

¡
A4 − A3A−11 A2

¢−1
A3A

−1
1 . (46)

¤

Since the unknown loop gain is a constant, we augment the dynamics as follows.

Kk+1 = Kk. (47)

Hence, the augmented state dynamics evolve in <n+1 and are xk+1

Kk+1

 =

 A ukb

0 1

 xk

Kk

+
 Γ

0

wk (48)

and the measurement equation is

zk+1 =
³
C

... 0
´ xk+1

Kk+1

+ vk+1. (49)

As can be seen, the equations are similar to that of the deterministic model except

for noise now being modeled into the system. Here, the wk and vk+1 represent the

process noise and measurement noise, respectively. The covariances of these noises

are represented by Q and R in the stochastic model. The values of Q and R were

defined in Chapter 1.

The prior information at time instant k is xk

Kk

 ∈ N
 bxkbKk

 , Pk
 (50)
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where

Pk =

 Pkxx pkxK

pTkxK pkKK

 (51)

is the estimation error covariance matrix. The elements of Pk are

Pkxx ∈ <n×n, pkxK ∈ <n, pkKK ∈ <1. (52)

Hence, before the zk+1 measurement is recorded, the augmented state xk+1

Kk+1

 ∈ N

 A ukb

0 1

 bxkbKk

 ,
 A ukb

0 1

Pk
 AT 0

ukb
T 1

+
 ΓQΓT 0

0 0


= N

 Abxk + bKkbukbKk

 ,


APkxxA
T + uk(ApkxKb

T+

bpTkxKA
T ) + u2kpkKKbb

T + ΓQΓT

...

...
ApkxK + ukpkKKb

· · · · · · · · · · · · · · · · · · · · · · · · ... · · · · · · · · · · · · · · ·
pTkxKA

T + ukpkKKb
T ... pkKK



 .
(53)

Next, apply the Bayesian estimation formula and obtain

bx+k = bx−k +K(z −Hbxk) (54)

21



 bxk+1bKk+1

 =

 Abxk + bKkbukbKk

+K
zk+1 − ³ C ... 0

´ Abxk + bKkbukbKk


=

 Abxk + bKkbukbKk

+K ³zk+1 − CAbxk − uk bKkCb
´

(55)

where the Kalman gain

K =


APkxxA

T + uk(ApkxKb
T+

bpTkxKA
T ) + u2kpkKKbb

T + ΓQΓT

...

...
ApkxK + ukpkKKb

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ... · · · · · · · · · · · · · · · · · ·
pTkxKA

T + ukpkKKb
T ... pkKK

×
 CT

0

× ©CAPkxxATCT + uk £CApkxK (Cb)T + (Cb)(CApkxK )T ¤
+u2kpkKK (Cb)(Cb)

T + CΓQΓTCT +R
ª−1

=


APkxxA

TCT + uk

h
ApkxK(Cb)

T + b (CApkxK)
T
i

+u2kpkKKb(Cb)
T + ΓQΓTCT

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(CApkxK )

T + ukpkKK (Cb)
T

×
©
CAPkxxA

TCT + uk
£
CApkxK (Cb)

T + (Cb)(CApkxK )
T
¤

+u2kpkKK (Cb)(Cb)
T + CΓQΓTCT +R

ª−1
. (56)

Finally,

Pk+1(x,K) = Pk(x,K) −K
³
C

... 0
´
Pk(x,K). (57)
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Hence, we calculate

Pk+1(x,K) =


APkxxA

T + uk(ApkxKb
T+

bpTkxKA
T ) + u2kpkKKbb

T + ΓQΓT

...

...
ApkxK + ukpkKKb

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ... · · · · · · · · ·
pTkxKA

T + ukpkKKb
T ... pkKK

−


n
APkxxA

TCT + uk
h
ApkxK (Cb)

T + b (CApkxK )
T
i

+u2kpkKKb(Cb)
T + ΓQΓTCT

ª
×©CAPkxxATCT + uk £CApkxK (Cb)T + (Cb)(CApkxK )T ¤
+u2kpkKK (Cb)(Cb)

T + CΓQΓTCT +R
ª−1 × £CApkxxAT

+uk
¡
CApkxKb

T + CbApTkxKA
T
¢
+ u2kpkKKCbb

T + CΓQΓT
¤

...

...

...

...

...

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ...h
(CApkxK )

T + ukpkKK (Cb)
T
i

×©CAPkxxATCT + uk £CApkxK (Cb)T + (Cb)(CApkxK )T ¤
+u2kpkKK (Cb)(Cb)

T + CΓQΓTCT +R
ª−1 × £CAPkxxAT

+uk
¡
CApkxKb

T + CbApTkxKA
T
¢
+ u2kpkKKCbb

T + CΓQΓT
¤

...

...

...

...

...

...

...

...

...

n
APkxxA

TCT + uk

h
ApkxK (Cb)

T + b (CApkxK )
T
i

+u2kpkKKb(Cb)
T + ΓQΓTCT

ª
×©CAPkxxATCT + uk £CApkxK (Cb)T + (Cb)(CApkxK )T ¤

+u2kpkKK (Cb)(Cb)
T + CΓQΓTCT +R

ª−1
× (CApkxK + ukpkKKCb)

... · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

...

...

...

...

h
(CApkxK )

T + ukpkKK (Cb)
T
i

×©CAPkxxATCT + uk £CApkxK (Cb)T + (Cb)(CApkxK )T ¤
+u2kpkKK (Cb)(Cb)

T + CΓQΓTCT +R
ª−1

× (CApkxK + ukpkKKCb)



.

(58)
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Thus,

Pk+1xx = [APkxxA
T + uk(ApkxKb

T + bpTkxKA
T ) + u2kpkKKbb

T + ΓQΓT ]

×
n£
APkxxA

T + uk(ApkxKb
T + bpTkxKA

T ) + u2kpkKKbb
T + ΓQΓT

¤−1
−CT ©CAPkxxATCT + uk £CApkxK(Cb)T + (Cb)(CApkxK )T ¤
+u2kpkKK (Cb)(Cb)

T + CΓQΓTCT +R
ª−1

C
o

×[APkxxAT + uk(ApkxKbT + bpTkxKAT ) + u2kpkKKbbT + ΓQΓT ]. (59)

Next, apply the MIL (Lemma 2) to the expression in the outer curly brackets

from Eq. (59), viz.,

n£
APkxxA

T + uk(ApkxKb
T + bpTkxKA

T ) + u2kpkKKbb
T + ΓQΓT

¤−1
−CT ©CAPkxxATCT + uk £CApkxK (Cb)T + (Cb)(CApkxK )T ¤
+u2kpkKK (Cb)(Cb)

T + CΓQΓTCT +R
ª−1

C
o−1

where we set

A1 =
£
APkxxA

T + uk(ApkxKb
T + bpTkxKA

T ) + u2kpkKKbb
T + ΓQΓT

¤−1
A2 = CT

A3 = C

A4 =
©
CAPkxxA

TCT + uk
£
CApkxK (Cb)

T + (Cb)(CApkxK )
T
¤

+u2kpkKK (Cb)(Cb)
T + CΓQΓTCT +R

ª
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we obtain

n£
APkxxA

T + uk(ApkxKb
T + bpTkxKA

T ) + u2kpkKKbb
T + ΓQΓT

¤−1
−CT ©CAPkxxATCT + uk £CApkxK (Cb)T + (Cb)(CApkxK )T ¤
+u2kpkKK (Cb)(Cb)

T + CΓQΓTCT +R
ª−1

C
o−1

=
£
APkxxA

T + uk(ApkxKb
T + bpTkxKA

T ) + u2kpkKKbb
T + ΓQΓT

¤
+
£
APkxxA

T + uk(ApkxKb
T + bpTkxKA

T ) + u2kpkKKbb
T + ΓQΓT

¤
CT

×©©CAPkxxATCT + uk £CApkxK (Cb)T + (Cb)(CApkxK)T ¤
+u2kpkKK (Cb)(Cb)

T + CΓQΓTCT +R
ª

−C £APkxxAT + uk(ApkxKbT + bpTkxKAT ) + u2kpkKKbbT + ΓQΓT
¤
CT
ª−1

×C £APkxxAT + uk(ApkxKbT + bpTkxKAT ) + u2kpkKKbbT + ΓQΓT
¤
.

Reducing the above gives

£
APkxxA

T + uk(ApkxKb
T + bpTkxKA

T ) + u2kpkKKbb
T + ΓQΓT

¤
×
n£
APkxxA

T + uk(ApkxKb
T + bpTkxKA

T ) + u2kpkKKbb
T + ΓQΓT

¤−1
+ CTR−1C

o
× £APkxxAT + uk(ApkxKbT + bpTkxKAT ) + u2kpkKKbbT + ΓQΓT

¤
.

Hence, Eq. (59) can now be reduced to

Pk+1xx =
n£
APkxxA

T + uk(ApkxKb
T + bpTkxKA

T ) + u2kpkKKbb
T + ΓQΓT

¤−1
+CTR−1C

ª−1
. (60)
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In addition,

pk+1KK = pkKK −
£
(CApkxK )

T + ukpkKK (Cb)
T
¤

×©CAPkxxATCT + uk £CApkxK (Cb)T + (Cb)(CApkxK )T ¤
+u2kpkKK (Cb)(Cb)

T + CΓQΓTCT +R
ª−1

(CApkxK + ukpkKKCb)

(61)

and

pk+1xK = ApkxK + ukpkKKb−
©
APkxxA

TCT + uk
£
ApkxK (Cb)

T + b(CApkxK )
T
¤

+u2kpkKKb(Cb)
T + ΓQΓTCT

ª
©
CAPkxxA

TCT + uk
£
CApkxK (Cb)

T + (Cb)(CApkxK )
T
¤

+u2kpkKK (Cb)(Cb)
T + CΓQΓTCT +R

ª−1
(CApkxK + ukpkKKCb) . (62)

We also partition the Kalman gain vector as follows

K =

 Kx

KK

 (63)

where

Kx =
©
APkxxA

TCT + uk
£
ApkxK (Cb)

T + b(CApkxK )
T
¤

+u2kpkKKb(Cb)
T + ΓQΓTCT

ª
×©CAPkxxATCT + uk £CApkxK (Cb)T + (Cb)(CApkxK )T ¤
+u2kpkKK (Cb)(Cb)

T + CΓQΓTCT +R
ª−1

(64)
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and

KK =
£
(CApkxK )

T + ukpkKK (Cb)
T
¤

×©CAPkxxATCT + uk £CApkxK (Cb)T + (Cb)(CApkxK )T ¤
+u2kpkKK (Cb)(Cb)

T + CΓQΓTCT +R
ª−1

. (65)

Hence, we finally obtain

bxk+1 = Abxk + bKkbuk +Kx(zk+1 − CAbxk − bKkCbuk) (66)bKk+1 = bKk +KK(zk+1 − CAbxk − bKkCbuk). (67)

¤

Proposition 3 An additional application of the MIL will reduce the number of ma-

trix inversions such that only the low-order matrix

CAPkxxA
TCT + uk

£
CApkxK(Cb)

T + (Cb)(CApkxK )
T
¤

+u2kpkKK (Cb)(Cb)
T + CΓQΓTCT +R

needs to be inverted.

¤

3.3 Discussion

It is important to realize that the absence of complete plant information, viz.,

the uncertainty in the loop gain parameter K, causes both the parameter and the

state estimation error covariances to be dependent on the input signal - see, e.g.,

the covariance equations (43)-(45) in Theorem 1. This is a major departure from

the classical state estimation paradigm in linear control theory. Thus, the loop gain

estimate bK (and also the loop gain estimation error covariance) are now control-
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dependent. Obviously, the best loop gain estimate is obtained at the end of the

estimation interval, at time N . In addition, the algorithm-provided loop gain and

state estimates are correlated. Furthermore, the loop gain and state estimates’ de-

pendence on the input signal is nonlinear. The input signal dependence of the loop

gain and state estimation error covariances, is a unique manifestation of the dual con-

trol effect. This means that the estimation error variance is dependent on the input

signal, which is not the case in classical linear state estimation/Kalman filtering.

3.3.1 Example 1. Consider the classical Kalman Filter paradigm where

the loop gain K is known, i.e., K = 1. In this special case

p0KK = 0, p0xK = 0, pkKK = 0, pkxK = 0 for all k = 1, 2, 3, ....

and it follows that

Pk = Pkxx

KK = 0

Kx =
¡
APkxxA

T + ΓQΓT
¢
CT

× ¡CAPkxxATCT + CΓQΓTCT +R¢−1
Pk+1xx =

h¡
APkxxA

T + ΓQΓT
¢−1

+ CTR−1C
i−1

.

Thus, the classical Kalman filter formulae are recovered.

Remark 4 If x0 is known, viz., x0 ∈ N (x0, 0), i.e., P0x = 0, and only the loop gain
parameter K is not known, i.e., P0xx = 0, p0xK = 0, one nevertheless has to deal

with an uncertain x at time k (even if Γ = 0 and if there is no process noise) and

one must propagate

 bxkbKk

 and Pk(n+1)×(n+1).

¤
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3.3.2 Example 2. Special case: C is a row vector (i.e., a scalar measurement

is being used), then the estimation algorithm is

bxk+1 = Abxk + bKkbuk +Kx(zk+1 − CAbxk − bKkCbuk)bKk+1 = bKk +KK(zk+1 − CAbxk − bKkCbuk)

where the Kalman gain for state estimation is

Kx =
1

X

©
APkxxA

TCT + uk [(Cb)ApkxK + (CApkxK )b]

+u2k(Cb)pkKKb+ ΓQΓTCT
ª

and where the scalar X is given by

X , CAPkxxA
TCT + 2ukCbApkxK

+u2k(Cb)pkKK + CΓQΓ
TCT +R.

The Kalman gain for loop gain estimation is

KK =
[CApkxK + ukCbApkKK ]

X
.

Finally, the estimation error covariances are

Pk+1xx =
n£
APkxxA

T + uk(ApkxKb
T + bpTkxKA

T ) + u2kpkKKbb
T + ΓQΓT

¤−1
+
1

R
CTC

¾−1
pk+1KK = pkKK −

[CApkxK + ukCbApkKK ]
2

X

pk+1xK = ApkxK + ukpkKKb−
[CApkxK + ukCbApkKK ]

X

×©APkxxATCT + uk [(Cb)ApkxK + (CApkxK )b]
+u2k(Cb)pkKKb+ ΓQΓTCT

ª
.

29



In summary, a system identification algorithm was developed to identify a

system’s loop gain, K.
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IV. Adaptive Parameter Smoothing

In conventional indirect adaptive control a two-module controller consisting of a

compensator and a system identification module is used. The compensator is syn-

thesized on-line using a model-based controller design methodology. The system

identification module provides the plant parameter estimate. The latter is used in

the on-line compensator synthesis algorithm to update the plant model and thus

modify the compensator accordingly, which yields adaptive control action. There

is a tendency to rely on assumed certainty equivalence and directly insert the pa-

rameter estimate into the compensator synthesis formula. This course of action is

to a large extent motivated by the classical solution of the LQG problem in which

an LQR state feedback compensator is used in tandem with a Kalman filter which

provides the state estimate [17].

At this point it is worthwhile to recall the LQG paradigm momentarily: the

plant is linear and known and the cost functional is quadratic in the state and con-

trol signals. The state estimation problem for linear control systems with known

dynamics, control and observation (A, B, C) matrices resides in the realm of lin-

ear regression, and therefore the Kalman filter solution of the minimum variance

state estimation problem yields an unbiased estimate of the state. An LQR com-

pensator directly operates on the Kalman filter-provided state estimate, viz., the

LQR compensator is used in tandem with the Kalman filter. The LQG controller,

which consists of two modules, the Kalman filter and the fixed LQR compensator,

is optimal.

Our plant, specified in Eqs. (1) - (5), is linear, however it contains the un-

known parameter K which quantifies the degree of control power loss in the control

effector. Thus, the state and the plant parameter K are to be jointly estimated. It

is remarkable that also our system identification algorithm, as stated in Theorem 1,

yields an unbiased state and parameter estimate and a reliable predicted estimate
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error covariance. Moreover, in the special case where p0KK = 0 and K0 = 1, viz., the

parameter is known and therefore the (linear) plant is completely known, the clas-

sical Kalman filter state estimation formulae are recovered - see, e.g., Example 1 in

Chapter 3. Indeed, our derivation of the system identification algorithm is rigorous

and:

• The estimate is unbiased.

• The predicted covariance of the estimation error is reliable.

In addition, it is noteworthy that when the plant is completely known and one

is exclusively interested in the state estimate, as is the case in the classical Kalman

filtering paradigm, the quality of the state estimate, viz., the predicted covariance

of the state estimation error, is not dependent on the plant input. Indeed, the

covariance of the state estimation error is not used in the LQG controller. However,

in the adaptive control case, where the plant parameterK is not known, the predicted

state and parameter estimation error covariance are dependent on the plant input

- see, e.g., Eqs. (43) - (45). Thus, in adaptive control, the quality of the state and

parameter estimate is dependent on the input signal. Evidently, when the predicted

estimation error covariance is small, the quality of the parameter estimate is good,

and, conversely, when the predicted estimation error covariance is large, we cannot be

certain about the true value of the parameter and the system identification algorithm-

provided parameter estimate might be far from the true parameter. Thus, the control

signal-dependence of the quality of the parameter (and state) estimate motivates

one to refer to the excitation quality of the control signal. Good excitation yields a

predicted parameter estimate error variance which is small, and thus is conducive to

a well designed parameter estimation experiment.

The following is crucial. In our specific situation where the system identifica-

tion algorithm is rigorously derived, an unbiased state and parameter estimate and

a reliable computed (predicted) estimation error covariance are obtained. Hence,
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the excitation quality is indeed directly reflected in the size of the predicted state

and parameter estimation error covariance. In other words, we have a direct mea-

surement of the, otherwise somewhat nebulous, degree of excitation - it is given by

the size of the computed parameter estimation error variance, provided the latter

is reliable, which, in our case, it is. Indeed, the importance of the computed para-

meter estimation error variance being reliable cannot be overestimated. When an

erroneous computed estimation error variance is used in, e.g., state estimation, the

state estimate becomes “biased” and one then refers to filter divergence. This is

a common occurrence in extended Kalman filtering [16, 17]. Our work hinges on

the computed parameter estimation error variance being reliable, by virtue of the

rigorous system identification algorithm developed in Chapter 3.

Now, the dependence of the quality of the system identification algorithm-

provided parameter and/or state estimate on the control signal is the root cause

of the dual control effect observed in nonlinear stochastic control and in adaptive

control [17]. When the straightforward assumed certainty equivalence principle

is used in adaptive control, the dual control effect is responsible for the bursting

phenomenon often observed in adaptive control [1, 17]. This then invalidates the

applicability of assumed certainty equivalence outside the very circumscribed LQG

paradigm, where the quality of the estimate is not dependent on the control signal

and the separation principle upon which certainty equivalence hinges is rigorously

proven.

4.1 Fixed-Weights Parameter Filter

Evidently, when the estimation error variance is large, due to low excitation,

and in the absence of a Separation Theorem [1, 12, 25, 27], we are not encouraged to

boldly insert the new plant parameter estimate into the compensator synthesis equa-

tion. Indeed, when the parameter estimation error variance is large, measurement

noise will cause the parameter estimate to vary wildly from window to window, as

33



0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

Step response of 1st order low-pass filter. Time constant is 0.1 second.

Time (sec.)

O
ut

pu
t

step Input
Output

Figure 2. Step response of 1st order low-pass filter. Time constant is 0.1 second.

observed in the simulation experiments in Figure 26. Since in the conventional adap-

tive control paradigm the parameter is stipulated to vary “slowly”, we realize that

the system identification algorithm-provided parameter estimates may be far from

their true value. This then motivates us to smooth the parameter estimate, viz., to

pass the parameter estimate through a fixed low-pass filter. This obviously removes

the fluctuations in the parameter estimate, viz., it removes the deleterious effects

of noise, and by doing so, provides a better parameter estimate to be subsequently

used in the compensator synthesis.

Consider the following first-order filter modeled by the scalar continuous-time

state equation:
·
x(t) = −1

τ
x(t) +

1

τ
u(t) (68)

Since our sampling time is 0.01 seconds, the required time constant is about τ = 0.1.

Figure 2 shows that this low-pass filter can smooth out the edge of the input signal.
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Now, the discretized low-pass filter of Eq. (68) [10] is:

xk+1 = adxk + bduk (69)

where

ad = e−
4T
τ , 4T = 0.01 sec ., τ = 0.1 sec . (70)

bd =

Z 4T

0

1

τ
e−

t
τ dt (71)

and

ad + bd = 1 (72)

Based on Eq. (68), the first-order low-pass filter used for smoothing the para-

meter estimate is

bKksmoothed = λ× bKk−1smoothed + (1− λ)× bKk (73)

where the weight λ is a fixed number and 0 < λ < 1. Unfortunately, the low-

pass filter inevitably introduces a lag in the parameter estimation process. This is

why we are using a low order low-pass filter for smoothing the parameter estimate.

The lag introduced by the fixed low-pass parameter filter is particularly problematic

in reconfigurable control, where a (flight) critical parameter is subject to possibly

abrupt change.

The performance of the low-pass filter for smoothing the parameter estimate

and the performance of the adaptive control system which uses this filter is discussed

in Chapter 7 in the sequel.
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4.2 Adaptive Parameter Filter

The simplicity afforded by a fixed low-pass filter which exclusively operates on

the parameter estimate provided by the system identification algorithm is appealing.

Note however that the fixed low-pass filter does not use the available predicted para-

meter estimation error variance, which, we recall, is reliably provided by the system

identification algorithm. Using the predicted estimation error variance information

which is provided by our rigorous system identification algorithm, one can selectively

employ smoothing. In our specific situation in which the system identification algo-

rithm is rigorously derived and therefore the parameter estimate is not biased and

the parameter estimation error variance is reliable, and when the parameter esti-

mation error variance is small, one is justified in directly using the plant parameter

estimate in the on-line compensator synthesis formula. Indeed, when the parameter

estimation error variance is small we can employ assumed certainty equivalence, for

then we know that the parameter estimate must be close to the true parameter value

(only if that computed error variance is reliable). Then, there is no need to filter the

parameter estimate and therefore the lag caused by passing the parameter estimate

through a low pass filter is now removed. If however the parameter estimation error

variance is large and we are not confident using the system identification - provided

parameter estimate in the compensator synthesis, it is then advantageous to rely

on filtering; this is tantamount to postulating that the parameter does not change

much during the short time interval under consideration and therefore in the on-line

compensator synthesis we partially rely on the old parameter estimate. In this case

one introduces some lag.

Hence, we now make the filter dynamics dependent on the parameter estima-

tion error variance provided by the upstream system identification module, and in

doing so we adaptively filter the loop gain estimate. These insights into the estima-

tion situation at hand suggest the following strategy:
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Set the weight of the current parameter estimate provided by the system iden-

tification algorithm, 1− λk, to satisfy

log10(1− λk) =
1

10(SNRk−SNRk−wl)
(74)

where wl is the moving window length used in the system identification algorithm,

and the Signal to Noise Ratio (SNR) at time k is defined as

SNRk = 20 log10(
K

σKk

) (75)

Thus, A decrease in the SNR as moves from estimation window k−wl to estimation
window k has the effect of decreasing the reliance on the most recent loop gain

estimate, bKk.

Hence, the adaptive filter for the parameter estimate is

bKksmoothed = λk × bKk−1smoothed + (1− λk)× bKk (76)

where the weight λk, 0 < λk < 1, is adjusted according to

λk = 1− 10
−( σKk

σKk−wl
)10

(77)

and where σKk
is the predicted parameter (K) estimation error variance provided

by the system identification module at time instant k.

The adaptive parameter estimate filter, Eqs. (76) and (77), automatically

smoothes the parameter estimate and removes bursting. The performance of the

adaptive filter for smoothing the parameter estimate and the performance of the

adaptive and reconfigurable control system which uses this filter is discussed in Chap-

ter 7 in the sequel.
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4.3 Discussion

In the conventional adaptive control paradigm one assumes that while the

plant parameter is not known, is time dependent, and is subject to change and

therefore needs to be identified on-line, the parameter changes slowly relative to the

plant dynamics. Reconfigurable control takes adaptive control to a higher level, and

allows for abrupt changes in the parameter, as would be the case under plant failure

conditions. Hence, the reduction of the lag in the parameter estimate is vary relevant

to reconfigurable control. Moreover, reducing the lag in the parameter estimate is

particularly important when the plant under consideration is open loop unstable,

feedback control is used for stabilization, and the parameter under consideration

is the critical open loop gain. Now, the adaptive parameter estimate smoother

developed herein uses all the available information on the plant parameter provided

by the on-line system identification module and hence the lag and the error in the

plant parameter estimate calculated by the smoother and sent to the compensator

is minimized.

Hence, in this dissertation a novel adaptive and reconfigurable control architec-

ture is developed which implements an automatic anti-bursting measure that entails

an adaptive plant parameter smoother in tandem with the system identification

module. In summary, a three-module adaptive and reconfigurable digital controller

consisting of a system identification algorithm, an adaptive parameter estimate low-

pass filter, and an on-line PI compensator synthesis formula, is developed.
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V. Tracking Controller

In flight control, the aircraft physical system can be adequately represented as a

mathematical model and one can synthesize a model-based feedback controller. The

control law used entails full state feedback [10]. Full state feedback is indeed possible

because in the controller design we use a low order truth model of the plant.

Although our indirect adaptive control approach uses a stochastic dynamic

model to account properly for measurement noise, it is nevertheless desirable to

consider a deterministic model first for the purpose of control design. Also, the clean

states are calculated deterministically, for later comparison with the algorithm’s

provided estimates when noise is included in the simulation.

In this dissertation, special attention is given to the design of the (linear)

tracking controller so that carefully thought out adaptive and reconfigurable flight

control experiments can be performed. In this chapter, we introduce a new design

methodology to design the tracking controller and analyze the effect of control surface

failure on the tracking controller. Our simulation experiments validate the benefits

of adaptive control, above and beyond the benefits of conventional feedback control.

5.1 Tracking Controller Design in State Space

Consider the following continuous-time m-input, l-output plant

.
x = Ax+Bu

y = Cx =

 D

E

x
where x ∈ <n, A ∈ <n×n, B ∈ <n×m, u ∈ <m, y ∈ <l, C ∈ <l×n, D ∈ <m×n,
E ∈ <p×n, and m+ p = l. Let w = Dx be an m× 1 vector representing the outputs
that are required to follow an m× 1 reference signal r [9]. In steady state, we would
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Figure 3. Conventional Tracking Control System

like to have

w = r, ∀r ∈ Rm.

5.1.1 Conventional Tracking Controller. The conventional tracking control

law is

u = r − Fx, F ∈ <m×n (78)

where F is a stabilizing feedback matrix. A conventional closed loop tracking control

system is shown in Figure 3. Thus, the closed-loop system is

.
x = (A−BF )x+Br
y = Cx.

Indeed, there is an inordinate amount of attention given to stabilizing feedback

control laws of the form (78) in the control literature.

The steady state analysis of the tracking control law (78) is now performed:

x = −(A−BF )−1Br
y = Cx

= −
 D

E

 (A−BF )−1Br (79)
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where the barred quantities represent steady state values. We want asymptotic

tracking,

w = Dx = r (80)

i.e.,

r = −D(A−BF )−1Br , ∀r (81)

which yields the requirement

D(A−BF )−1B = −Im. (82)

Hence, not only must the matrix F be a stabilizing feedback, but it must also be

chosen such that the tracking condition (82) holds, which is quite a restriction.

5.1.2 Alternative Tracking Controller. Use the tracking proportional con-

troller

u = Krr − Fx

where Kr ∈ <m×m is the reference input signal gain.

Now, the steady state analysis yields the tracking condition

Kr = −(D(A−BF )−1B)−1. (83)

We now have the freedom to chose the feedback matrix F by assigning the poles of

the closed-loop system matrix arbitrarily, provided, of course, that the poles locate

in the left-half complex plane; in other words, we can chose the natural frequency

and thus, the bandwidth of the (closed-loop) tracking loop.

5.1.3 PI Tracking Controller. A PI controller can work by increasing the

system type without significantly changing the dominant roots of the characteris-
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tic equation. This is done by placing a zero close to the origin to counteract the

integrator pole located at the origin.

In order to include integral action in state space, we need to augment the plant:

.
x = Ax+Bu

.
z = r −Dx

y = Cx =

 D

E

x
where z ∈ <m is the “charge” on the integrator.

Use the linear tracking control law

u = r −Kxx−Kzz

where

F =
³
Kx, Kz

´
, Kx ∈ <m×n, Kz ∈ <m×m.

Hence, the augmented closed-loop dynamics are .
x
.
z

 =

 A−BKx −BKz

−D 0

 x

z

+
 B

Im

 r (84)

y =
³
C 0

´ x

z

 =

 D 0

E 0

 x

z

 .
According to Eq. (82), we need

³
D 0

´ A−BKx −BKz

−D 0

−1 B

Im

 = −Im. (85)
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First, we need to chose the proportional feedback gain Kx to render A−BKx stable.

In addition, we want to chose the integral gain Kz such that the augmented system

matrix is stable, and thus invertible, and, in addition, Eq. (85) holds.

In fact, the following holds:

A−BKx is stable =⇒ A−BKx is invertible

We require the following

Lemma 5 Consider the partitioned matrix

 M N

P 0

 where N is a n×m matrix,

P is a l × n matrix, and M is a n× n square and invertible matrix. The inverse of
the partitioned matrix is

 M N

P 0

−1

=

 M−1 −M−1N(PM−1N)−1PM−1

(PM−1N)−1PM−1
M−1N(PM−1N)−1

−(PM−1N)−1

 .
¤

The following holds.

Theorem 6 Asymptotic tracking is guaranteed with integral action, provided that

we chose a stabilizing proportional feedback Kx and a non-zero integral gain Kz s.t.

the closed-loop system matrix is stable.

Proof:

We apply Lemma 5 with

M = Acl = A−BKx

N = −BKz

P = −D
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and we use Eq. (85). Hence, the inverse of the augmented matrix that features in

the “tracking condition”, Eq. (85), is

 Acl −BKz

−D 0

−1

=

 A−1cl − A−1cl BKz(DA
−1
cl BKz)

−1DA−1cl

−(DA−1cl BKz)
−1DA−1cl

−A−1cl BKz(DA
−1
cl BKz)

−1

−(DA−1cl BKz)
−1

 .
Applying the tracking condition, Eq. (85), we calculate

³
D 0

´ Acl −BKz

−D 0

−1 B

Im


=

 DA−1cl −DA−1cl BKz(DA
−1
cl BKz)

−1DA−1cl

−DA−1cl BKz(DA
−1
cl BKz)

−1

T

×
 B

Im


=

³
0 −Im

´ B

Im


= −Im (86)

as required. Eq. (86) show that the “tracking condition” for PI control always holds,

no matter what the feedback control gains Kx and Kz are, provided that Kx and Kz

stabilize the augmented dynamics matrix.

¤

Remark 7 The non-zero integral gain Kz obviously influences the closed-loop dy-

namics of the tracking control system; in other words, how fast we approach the

asymptote. Moreover, the closed-loop system needs to be stable for the tracking con-

dition to apply.

¤
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Figure 4. Tracking Control System with Variable Open-Loop Gain K

5.1.4 Tracking under Failure. We now consider the continuous-time m-

input, l-output plant with variable open-loop gain matrix K - see, e.g., Fig. 4:

.
x = Ax+Bu = Ax+BKeu
y = Cx =

 D

E

x

where

K =


k1 0 · · · 0

0 k2 0
...

. . .
...

0 0 · · · km


is an m × m diagonal matrix, and ki is the degree of failure for different control

surfaces.

For an unfailed control system, the open-loop gain matrix K remains an iden-

tity matrix, i.e., k1, k2,..., km = 1. If the control surfaces i fails at time tf , the

control derivative is reduced, and 0 < ki < 1, i.e., the open-loop gain matrix K is no

longer an identity matrix. When B is changed to BK, Eq. (79), and consequently

Eq. (83) become

y = −
 D

E

 (A−BKF )−1BKr
and

Kr = −(D(A−BKF )−1BK)−1
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respectively. When failure occurs, the open-loop gain changes, viz., 0 < k1, k2,...,

km < 1.. Then, with a set state feedback gain F we get from the “tracking condition”,

Eq. (82), and using Eqs. (80), (81) and (83),

w = −D(A−BKF )−1BKr
6= −D(A−BF )−1Br = r

and

Kr = −(D(A−BKF )−1BK)−1

6= −(D(A−BF )−1B)−1.

Thus, the conventional proportional tracking controller can no longer track the ref-

erence (command) signal correctly.

Now, include a variable K in our PI tracking control system. Then Eq. (84)

becomes  .
x
.
z

 =

 A−BKKx −BKKz

−D 0

 x

z

+
 BK

I

 r
and the tracking condition, Eq. (85), becomes

³
D 0

´ AclK −BK
−D 0

−1 BK

I


=

 DA−1clK −DA−1clKBK(DA−1clKBK)−1DA−1clK
−DA−1clKBK(DA−1clKBK)−1

T

×
 BK

I


=

³
0 −I

´ BK

I


= −I (87)
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where

AclK ≡ A−BKKx

BK ≡ BKKz.

Thus, Eq. (87) shows that, even when the open loop gain matrix is allowed to vary,

the “tracking condition” will always hold when PI control is employed, irrespective

of the open loop plant gain K and the feedback control gains Kx and Kz, provided

that stability is preserved. Asymptotic tracking is guaranteed; however, in the face

of control surface failure, the tracking performance suffers.

In summary, whereas the conventional tracking controller and the proportional

controller can no longer maintain asymptotic tracking performance in the face of

control surface failure, a PI controller will. When control surface failure occurs, the

fixed PI controller can preserve asymptotic tracking performance. The proportional

and integral gains need to be chosen such that closed-loop stability is universally

achieved, so that the asymptotic tracking result applies. Evidently, nothing is said

here about transient performance.
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VI. Aircraft Model and Fixed PI Controller

In this research, an F-16 class aircraft flying at Mach 0.9 at 20,000 feet is con-

sidered. The short period pitch dynamics approximation is used. The pitch dynamics

are unstable and hence the aircraft relies on feedback control for stabilization. The

relevant states are α and q, the aircraft angle of attack and pitch rate, respectively,

and the control variable is the elevator deflection δe. Thus, the plant truth model

used in the system identification algorithm is

.
α = Zαα+ Zqq +KZδeδe (88)
.
q = Mαα+Mqq +KMδeδe. (89)

The Z stability and control derivatives are

Zα = −1.3433, Zq = 0.9946, Zδe = −0.1525

and the M stability and control derivatives are

Mα = 3.5, Mq = −1.0521, Mδe = −24.3282.

Hence, in (continuous-time) state space form, the bare aircraft (plant) dynamics are

.
x = Ax+ bu

=

 −1.3433 0.9946

3.5 −1.0521

x+
 −0.1525
−24.3282

u (90)

where the state

x =

 α

q


48



Bode Diagram of 1st order actuator for F-16 class A/C
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Figure 5. Bode Diagram of firstst-order actuator for F-16 class A/C.

and the control variable u is the elevator deflection δe. The above second-order plant

model is the truth model used in the system identification algorithm.

In the linear tracking controller, the reference signal r is summed with the

states α and q feedback. The controller-generated command to the elevator, δec, is

applied to a first order actuator model 20
S+20

with a bandwidth of 20 rad/sec. The

actuator output, δe, is the input to the plant. A first-order actuator model suffices

in the “low frequency” bandwidth of the pitch dynamics as shown in Figure 5. A

more elaborate fourth-order actuator model [21] is

δe(S)

δec(S)
=

(20.2)(5097.96)(144.8)

(S + 20.2)(S2 + 1008S + 5097.96)(S + 144.8)
(91)

and its Bode plot is shown in Figure 6. However the first-order actuator model

captures the lag characteristics of the actuator in the bandwidth of interest.
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Bode Diagram of 4th order actuator for F-16 class A/C
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Figure 6. Bode Diagram of fourth order actuator for F-16 class A/C.

Augmenting the dynamics and control matrices with the first-order actuator

dynamics yields the third-order augmented plant

.
x = Ax+ bu

=


Zα Zq Zδe

Mα Mq Mδe

0 0 − 1
τ

x+

0

0

1
τ

 δec. (92)

Now the states are

x =


α

q

δe

 . (93)

The control signal is conventionally generated according to

δec = r − (Kα Kq Kδe)x (94)
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Table 1. Longitudinal Dynamics with simple Tracking Controller.
System Eigenvalues
Open-loop -20.0 -3.0691 0.6737

Closed-loop, K=1 -14.4615+15.5040j -14.4615-15.5040j -1.4724
Closed-loop, K=0.8 -1434894+12.4774j -1434894-12.4774j -1.4165
Closed-loop, K=0.4 -18.0087 -11.2516 -1.1351
Closed-loop, K=0.2 -24.3672 -5.3706 -0.6576
Closed-loop, K=0.09 -26.5020 -3.8255 -0.0679
Closed-loop, K=0.08 -26.6776 -3.7210 0.0032

and the first order actuator dynamics is

.

δe = −1
τ
δe +

1

τ
δec (95)

where τ = 0.05 sec. The above third-order plant model is the truth model used for

tracking controller design. The longitudinal dynamics are given in Table 1.

The closed loop dynamics A matrix is now formed using the state feedback

tracking control law in Eq. (94). The resulting A and b closed loop matrices are

Acl = A+ b
³
−Kα −Kq −Kδe

´

=



Zα Zq Zδe

Mα Mq Mδe

0 0 − 1
τ

+

0

0

1
τ

³ −Kα −Kq −Kδe

´

=


Zα Zq Zδe

Mα Mq Mδe

− 1
τ
Kα − 1

τ
Kq − 1

τ
(1 +Kδe)



Bcl =


0

0

1
τ

 (96)
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so we get
.
x = Aclx+Bclr. (97)

This proportional controller does not in general yield asymptotic tracking. Hence,

it is modified in the sequel.

The F-16 class plant is open-loop unstable. This is a normal characteristic of

advanced fighter aircraft. Using full state feedback, the flight control system is sta-

bilized. The ensuing closed loop linear state feedback control system is very robust;

a well designed simple tracking controller, Eq. (94), can handle open-loop gains as

low as K1 = 0.08 while preserving stability, although tracking performance is sig-

nificantly degraded after the degree of failure increases to K1 = 0.2. At lower K1

values, the feedback stabilization action becomes ineffective and the closed loop sys-

tem becomes unstable, as shown in Table 1 and Figure 7. In this work, two tracking

controllers are considered, a fixed proportional controller and a fixed Proportional

plus Integral (PI) controller.

6.1 Proportional Controller

The tracking controller is now designed. Based on it, a proportional controller

and an alternative fixed PI controller will be designed in the following sections.

To find the gain needed to improve tracking performance, the augmented

closed-loop state space equation is used. The reference signal r(≡ q) is the exogenous
input and control signal is

δec = Krr − (Kαα+Kqq +Kδeδe). (98)

At steady state,
.
x = Aclx+KrBclr = 0. Writing the augmented state space equation

with the necessary gain, Kr, at steady state,

0 = Aclx+KrBclr (99)
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Figure 7. Simple tracking step responses with various open-loop gains K1.
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and solving for x yields

x = KrA
−1
cl Bclr. (100)

Substituting the above into the output equation

y = cx (101)

gives us

y = Krc(A
−1
cl Bclr). (102)

It is desired for the output to track a step input. For this to happen

y = r (103)

which implies

1 = KrcA
−1
cl Bcl (104)

must hold. Solving for u gain Kr, yields

Kr =
1

cA−1cl Bcl
(105)

which gives the required reference signal gain needed for proper tracking. This gain

is then applied to the system before the feedback loop as shown in Figure 1. This

adjusts our Bcl to the following

Bcl =


0

0

Kr
τ

 . (106)
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Table 2. Longitudinal Dynamics with Proportional Tracking Controller.
System Eigenvalues
Open-loop -20.0 -3.0691 0.6737

Closed-loop, K=1 -14.4615+15.504j -14.4615-15.504j -1.4724
Closed-loop, K=0.8 -14.4894+12.4774 -14.4894-12.4774 -1.4165
Closed-loop, K=0.4 -18.0087 -11.2516 -1.1351
Closed-loop, K=0.2 -24.3672 -5.3706 -0.6576
Closed-loop, K=0.09 -26.5020 -3.8255 -0.0679
Closed-loop, K=0.08 -26.6776 -3.7211 0.0032

The gains needed for Kα, Kq and Kδe are

Kα = 0.283

Kq = 0.876

Kδe = −0.4.

So, the proper tracking dynamics are obtained.

Tracking is achieved using a fixed proportional controller. Table 2 shows the

eigenvalues of the closed-loop system using the fixed proportional tracking controller.

Once again, the open-loop plant is unstable and feedback stabilization is used.

The closed-loop system becomes unstable again when the degree of control surface

loss becomes excessively large, viz., K1 = 0.08 as shown in Table 2 and Figure 8.

However, the tracking performance degrades significantly after the degree of failure

increases to K1 = 0.2.

6.2 PI Controller

Designing a PI controller in state space for good tracking performance requires

the system dynamics to be further augmented. Now

.
z = r − q (107)
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Figure 8. Proportional controller step responses with various open-loop gains K1.
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and

.
x =


Zα Zq Zδe 0

Mα Mq Mδe 0

0 0 − 1
τ
0

0 −1 0 0

x+

0

0

0

1

 r +

0

0

1
τ

0

 δec (108)

where the states are now

x =


α

q

δe

z

 (109)

and, as before, r is the reference signal. The ”charge” on the integrator is z. Now

the PI control law is

δec = r −Kαα−Kqq −Kδeδe +Kzz. (110)

The new closed-loop system matrices Acl and Bcl are

Acl = A+ b
³
−Kα −Kq −Kδe Kz

´

=


Zα Zq Zδe 0

Mα Mq Mδe 0

−Kα

τ
−Kq

τ
− (1+Kδe)

τ
Kz
τ

0 −1 0 0



Bcl =


0

0

1
τ

1

 . (111)
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Table 3. Longitudinal Dynamics with PI Tracking Controller.
System Eigenvalues
Open-loop -20.0 -3.0691 0.6737 N/A

Closed-loop, K=1 -14.4560+15.4990j -14.4560-15.4990j -1.4733 -0.01
Closed-loop, K=0.8 -14.4841+12.4721j -14.4841-12.4721j -1.4169 -0.0103
Closed-loop, K=0.4 -18.0244 -11.2266 -1.1328 -0.0116
Closed-loop, K=0.2 -24.3692 -5.3625 -0.6480 -0.0157
Closed-loop, K=0.09 -0.0352+0.0683j -0.0352-0.0683j -26.5027 -3.8222
Closed-loop, K=0.08 0.0005+0.0732j 0.0005-0.0732j -26.6782 -3.7181

The proportional and integral gains needed to obtain good tracking performance are

Kα = 0.283

Kq = 0.876

Kδe = −0.4
Kz = 0.01. (112)

Thus, tracking is achieved using a fixed PI controller. Table 3 shows the poles

of the open-loop plant and the poles of the closed-loop system when this fixed PI

controller is used for tracking control. As can be seen in Table 3 and Figure 9,

the bare plant is originally open-loop unstable. State feedback stabilizes the α, q,

and δe states of the unimpaired closed-loop flight control system. As the loop gain

K is lowered from a value of 1, which corresponds to having no failure, to a value

of K1 ≈ 0.08, an almost complete longitudinal control surface loss, the closed-loop
system reverts to instability again. However, the tracking performance degrades

significantly after the degree of failure increases to K1 = 0.2.

In this chapter, the deterministic aircraft model of the control system is devel-

oped. It was shown how the [A , b] plant is augmented with actuator dynamics, and

the tracking control law was introduced. Because the “standard” tracking controller

could not properly track a step input, a proportional and a PI controller are imple-
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Figure 9. PI controller step responses with various open-loop gains K1.
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mented for two different case studies. The closed loop matrices were found for both

fixed controllers and the gains were designed by pole assignment.
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VII. Simulation Results

7.1 Experimental Setup and Tracking Control

One would like a feedback control system to be robust enough to perform within

specifications in the face of parametric uncertainty, e.g., control surface loss due to

failure or battle damage, and in the presence of measurement noise and unmod-

eled dynamics. As the critical open-loop gain K decreases from K = 1 to K ¿ 1,

which represents a transition from no failure to substantial control surface loss, the

tracking of the reference signal slips. Even though failure, viz., a reduction in the

control derivative, causes a fixed controller’s tracking performance to deteriorate,

still, a correct system identification algorithm will properly estimate the degree of

failure. In fact, poor tracking caused by failure increases excitation, which boosts

the performance of the system identification algorithm. Hence one is motivated to

use the available signals required for feedback control in an on-line system identi-

fication algorithm and subsequently adjust the controller’s gain on line in order to

account for the failure-induced reduction in the plant’s open-loop gain, thus recov-

ering performance and achieving adaptive and reconfigurable control action. This

control concept, illustrated in Figure 1, is implemented in our simulation.

In most of our MATLAB [14] simulations, the command signal consists of

4 pitch rate (qc) doublet commands, having an amplitude of ±10 deg/sec and a
period of 4 seconds, giving a 16 seconds measurement record. The input command

represents a pilot “exciting the stick” maneuver, used in flight test. The doublets are

passed through a low pass prefilter, 3
S+3

. Such a prefilter is currently used in F-16

aircraft. The pulsed command signal and the ensuing reference pitch rate command

signal are shown in Figure 10. Except when specified otherwise, a control surface

failure is induced at tf = 8 seconds into the flight in all the test runs. This translates

into a jump in the parameter K from 1 to K = K1, 0 < K1 < 1. In our experiments

the simulated degree of failure is known and is parameterized by K1. Thus, during
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Figure 10. Reference input signal - pitch rate command. The “frequency” is π/2
rad/sec and the amplitude is 10 deg/sec.

the first 8 seconds, we simulate an unimpaired A/C, and at t = tf = 8 seconds we

simulate an elevator surface loss, so that for the remaining 8 seconds we control an

impaired A/C. Hence, the open-loop gain

K(t) =

 1 for 0 ≤ t < 8
K1 for 8 ≤ t ≤ 16

where

0 < K1 < 1.

In addition, measurement (sensor) noise is properly injected into the simula-

tion. Thus, the measured pitch rate is qm = q + vq, where vq = N
¡
0, σ2q

¢
, and the

measured angle of attack is αm = α+ vα, where vα = N(0,σ2α). Given that both α

and q observations are used for system identification, the following definition of SNR

is used:

SNR , 20 log
s

α2max + w
2q2max

2
¡
σ2α + w

2σ2q
¢ (113)
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where the weighting

w =
1p|p1p2| (sec)

and p1, p2 are the poles of the open loop plant (the short period approximation):

p1 = 0.6737 p2 = −3.0691.

In our simulations,

αmax ≈ 7 deg ., qmax ≈ 11 deg/sec.

The experimental results presented in Figures 35-24 were obtained using a fixed

σα = 0.03 deg.

For the SNR experiments of 40 and 60 dB, a scaled σq and σα are used. We

initially let σqi = 0.05 deg / sec, and σαi = 0.05 deg and we get

σq = kσqi, σα = kσαi (114)

where the SNR scaling parameter k>0. The SNR is now expressed as

SNR , 20 log
s

α2max + w
2q2max

2
¡
σ2α + w

2σ2q
¢
k2

(115)

and therefore, for a specified SNR, the parameter k is determined according to

k = 10−
SNR
20 ×

s
α2max + w

2q2max
2
¡
σ2α + w

2σ2q
¢ (116)

and in the simulation experiments, σα and σq are adjusted according to Eq. (114).

The σα, σq and SNR values are shown in Table 4.

We inject Gaussian noise of intensity σα = 0.03 [deg] and σq = 0.1108 [deg/sec]

using the random numbers generator of MATLAB [14] to simulate measurement
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Table 4. SNR Values.
σq deg / sec σα deg SNR dB

0.56 0.03 25.54
0.11 0.03 38.96
0.06 0.06 40
0.01 0.03 47.49
0.006 0.006 60

noise for the α and q signals. The measurement noise is propagated throughout the

feedback control system. The controller’s sampling rate is 100 Hz. The estimate of

the open-loop gain, bK, is continuously calculated by using the system identification

algorithm (Theorem 1) using, in most experiments, a moving data window of length

0.3 seconds (30 samples). The estimated gain is smoothed, and, in most experiments,

the gain information is used in the proposed controller at each sample time - thus

achieving on-line operation of the adaptive and reconfigurable control system.

The performance of each of the three modules of the adaptive and reconfig-

urable controller, viz, 1) the system identification module, 2) the parameter estimate

smoother, and 3) the tracking controller, is now separately assessed, followed by an

evaluation of the operation of the complete adaptive and reconfigurable controller.

During the simulations of SNR0s effects, several SNRs listed in Table 4 are

used in order to analyze the SNR0s effect on the estimation and tracking perfor-

mance. The window size effects on the performance of our three-module adaptive

and reconfigurable controller will be investigated too. For more realistic, we will

also include unmodeled dynamics (Phugoid dynamics, fourth-order actuator, and

parameter modeling error) into our basic model, and investigate the effects.

7.2 Estimation Performance

7.2.1 Expanding Window System Identification. The estimation perfor-

mance guaranteed by the novel system identification algorithm stated in Theorem

1 is experimentally validated, and the results of the open-loop gain identification
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experiments are presented. The plant truth model used in the system identification

algorithm is

.
α = Zαα+ Zqq +KZδe

.
q = Mαα+Mqq +KMδe

viz., the state

 α

q

 evolves in <2 and the control signal is u = δe. A discrete-time

version of the plant which corresponds to a sampling rate of 100Hz is embedded

in the system identification algorithm. In our experiments, the quality of the prior

information given to the system identification algorithm is intentionally chosen to

be poor. It therefore takes the system identification algorithm some time to settle

down and output the correct parameter estimates.

Figures 11 - 14 show how the system identification algorithm, using an ex-

panding horizon Kalman filter (Theorem 1), estimates the open-loop gain K as the

degree of failure increases. The true open-loop gain K and the identified open-loop

gain bK when using the fixed PI tracking controller mechanization are shown. The

parameter estimate shown are output by the expanding window system identifica-

tion algorithm and the parameter estimate smoother is not used. The settling time

is fairly long. However, the settling time is shortened when K1 is small. This is

clearly a nonlinear phenomenon. Also note the large parameter estimation errors

(spikes) near t = 0, before the estimation window fills up; also, it is evident that the

initialization transient terminates at time t ≈ 4 sec.

The estimation performance for various degrees of failure, and the estimation

time delay defined when the K estimate is within 10% of the true K after failure

(K1), is summarized in Table 5.
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Table 5. Open-loop gain estimation performance with expanding data window.
Fixed PI tracking controller and no parameter estimate smoother.

Actual Post-Failure
Open-Loop Gain K1

Final Est.
Value bK Relative Est.

Error(%)
Time Delay
(sec .)

0.8 0.8878 10.98 8.52
0.6 0.7311 21.86 11.81
0.4 0.4602 15.06 12.65
0.2 0.2073 3.63 4.77
0.1 0.1006 0.64 2.20
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Figure 11. Open-loop gain estimation when K1 = 0.8, σα = 0.03 deg and σq =
0.1108 deg / sec when an expanding window system ID algorithm is
used.
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Figure 12. Open-loop gain estimation when K1 = 0.6, σα = 0.03 deg and σq =
0.1108 deg / sec when an expanding window system ID algorithm is
used.
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Figure 13. Open-loop gain estimation when K1 = 0.4, σα = 0.03 deg and σq =
0.1108 deg / sec when an expanding window system ID algorithm is
used.
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Figure 14. Loop gain estimation when K1 = 0.2, σα = 0.03 deg and σq =
0.1108 deg / sec when an expanding window system ID algorithm is
used.

7.2.2 Moving-Window System Identification. The long parameter estima-

tion delays observed when an expanding horizon Kalman filter is used motivates us to

use a moving-window filter. A moving-window (or, equivalently, finite memory data

window) is preferred because, in the case of a failure, when a jump in the value of

the open-loop gain K occurs, the latter is identified faster than in the case where the

expanding horizon window system identification algorithm is used. By using the re-

cursive system identification algorithm (Theorem 1 in Chapter 3) inside a 0.3 second

window (of 30 samples), estimates of the parameters of interest are calculated. The

window is then shifted one sample time and the estimation process is repeated. This

yields the first parameter estimate at 0.3 seconds into the flight. Prior information

with negative α and q states and an initial guess of K = 0.8 are intentionally used to

test the moving-window estimation algorithm’s response to a poor initial guess. For

all of the windows, the same prior information of α = −1.4414 degrees, q = −2.4314
degrees/second, and K = 0.8 is used. The initial states α and q variances are 0.1
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Figure 15. Comparison of expanding horizon and moving window estimation with
fixed PI tracking controller. σα = 0.03 deg and σq = 0.1108 deg / sec .
K1 = 0.8.

[deg2], 1 [(deg/sec)2], respectively, and the variance of the parameter K initial guess

is 0.4.

Setting the post failure open-loop gain at K1 = 0.8, K1 = 0.6, K1 = 0.4,

and K1 = 0.2, we compare the open-loop gain ( bK) estimation performance of the
moving-window system identification algorithm and the expanding window system

identification algorithm. The fixed PI tracking controller, and no parameter estimate

filter, are used - see, e.g., Figures 15 to 18. One can see that the moving-window

is faster to settle on an estimate, while the expanding horizon system identification

algorithm takes more time to reach its final estimate value. Obviously, the estimate

provided by the expanding window Kalman filter is smoother than the estimate

provided by the relatively short sliding window. At the same time, the negative

effect on estimation performance of a very short window (¿ 0.3sec) is also evident

near t = 0.
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Figure 16. Comparison of expanding horizon and moving window estimation with
fixed PI tracking controller. σα = 0.03 deg and σq = 0.1108 deg / sec .
K1 = 0.6.
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Figure 17. Comparison of expanding horizon and moving window estimation with
fixed PI tracking controller. σα = 0.03 deg and σq = 0.1108 deg / sec .
K1 = 0.4.
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Figure 18. Comparison of expanding horizon and moving window estimation with
fixed PI tracking controller. σα = 0.03 deg and σq = 0.1108 deg / sec .
K1 = 0.2.

In Figures 15 to 18, the true parameter ± the predicted standard deviation

of the parameter estimate calculated by the moving-window system identification

algorithm are also shown. About 50.84%, 50.97%, 50.53%, and 51.78% of the K

estimates, bK, fall inside the predicted 1σ bound for K1 = 0.8, K1 = 0.6, K1 = 0.4,

and K1 = 0.2, respectively. Also note that when the moving-window system iden-

tification algorithm is used, for certain data windows, the excitation in the window

is poor, and these particular windows yield poor parameter estimates. At the same

time, the predicted parameter estimation error’s standard deviation, σK , is large,

which shows that the system identification algorithm is performing as expected. The

poor estimates occur when the window slides past the peaks of the input command,

as shown in Figures 15 to 18, i.e., the spikes in the parameter estimate seem to be

correlated with the input peaks, as is evident in Figure 19. The input command is

then near-constant, which yields poor excitation, which is reflected in a large σK;

this is bad for adaptive control.
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Figure 19. The reference command and the estimate bK provided by the mov-
ing window system identification algorithm. σα = 0.03 deg and σq =
0.1108 deg / sec. K1 = 0.6.

In this regard, Figures 20 and 21 show the estimation performance and tracking

performance when the command signal is a unit step function, i.e., a 1 deg/sec

pitch rate step command. Although now, due to the low SNR, and low excitation,

the parameter estimate is not so good and the estimation error variance is high,

nevertheless, about 69.27% of the K estimates, bK, fall inside the predicted 1σ bound
of bK. Evidently, the theoretical score is 68.3% - which, again shows that the system
identification algorithm performs as expected.

We finally note that, good estimation performance is recorded when the am-

plitude of the input step is 10 deg/sec. This is due to the higher SNR in this

experiment.

7.2.3 Barker Code Sequence as Reference Signal. The input signal de-

termines the excitation and thus strongly affects the estimation performance of the
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Figure 20. Loop gain K estimate provided by moving window identification algo-
rithm with unit step (1deg/sec pitch rate) input . Window size=30.
K1 = 0.6.
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Figure 21. q and α response when unit step (1deg/sec pitch rate) command is
applied. Moving window system ID algorithm and fixed PI controller
are used. σα = 0.03 deg and σq = 0.1108 deg / sec . K1 = 0.6.
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Figure 22. 13-bit Barker code.

system identification algorithm - as opposed to classical linear state estimation, i.e.,

Kalman filtering. The estimation benefits ensuing from using a strongly exciting

13-bit Barker code-like pilot command, as shown in Figure 22, are illustrated in this

section. The Barker code is used in radar. Since there are three different “frequen-

cies” in the 13-bit Barker code sequence, when it is used as the input command,

we get strong excitation. In our simulation, each bit of the Barker code represents

1 second, and the total simulation time is now 13 seconds. The amplitude is 10

deg/sec. The failure is now simulated at tf = 6 sec.

Fig. 23 shows the estimation performance of our moving-window system identi-

fication algorithm when the 13-bit Barker code is used as the reference signal. There

are some spikes occurring during bits 1-5, 6-7, and 8-9, in the less excited period of

the input sequence. After bit 10, the estimation performance is very good, since the

input sequence is strongly exciting. Moreover, the estimation’s settling time is very

short.
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Figure 23. K estimate when moving window system ID algorithm, fixed PI Con-
troller and 13-bit Barker input reference signal are used. σα = 0.03 deg
and σq = 0.1108 deg / sec . Failure at tf = 6 sec. and K1 = 0.6.

The use of a strongly exciting 13-bit Barker code-like pilot command yields

good estimation performance and it amply illustrates the effect of the input signal

on system identification performance.

7.3 Smoothing Filter Performance

7.3.1 Fixed-Weights Smoother. The estimates of K obtained from the

(short) moving-window system identification algorithm, with low excitation, and at

relatively low SNRs, have a high σK , viz., they fluctuate. Hence, we use the fixed

weights filter, Eq. (73) in Chapter 4, to smooth the parameter estimate before

sending the latter to the PI controller module.

Smoothing of the system identification algorithm’s parameter estimate helps

to reduce the negative effects of noise, and consequently, bursting, a.k.a., poor esti-

mation performance (during episodes of weak excitation) causing poor control per-

formance. Thus, smoothing the system identification provided parameter estimate
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improves the end-to-end tracking performance of the adaptive control system. Figure

24 shows the direct effect of smoothing on the loop gain estimate. The dashed lines

represent a ±20% error bound about the true loop gain, K. We can see that the

fixed-weights smoothing filter significantly reduces the fluctuation in theK estimate.

However, smoothing increases the identification time, which is of particular

importance in a control surface failure scenario for an open-loop unstable aircraft.

In Figure 25, the open-loop gain estimates shown are smoothed using various filter

weights. As can be seen, when λ = 0.7 is used, the delay in failure detection time

is greater than in the unsmoothed estimates case but is less than when the heavier

smoothing weights λ = 0.8 and λ = 0.9 are used. A reduction in estimation delay

comes at the expense of less smoothing. One must decide if this is an appropriate

trade-off. Moreover, increasing the window length also helps to reduce the negative

effects of noise and poor excitation, viz., the fluctuations in the open-loop gain

estimate are reduced, but not as effectively as when a low-pass filter for the parameter

estimate is used.

7.3.2 Adaptive Smoother. A fixed-weights smoother will reduce the fluctu-

ations in bK, but it will uniformly increase the identification delay, and, consequently,
response time, of the identification algorithm, as is evident in Figure 25.

Figure 26 clearly shows the relation between the parameter estimate bK and the

predicted standard deviation of the parameter estimation error, σK . The “spikes”

in bK occur when σK is large. This indicates that our rigorously derived estimation

algorithm indeed yields a reliable predicted parameter estimation error variance.

Hence, we can confidently use the σK information. Moreover, Figure 27 shows the

spikes in the parameter estimate to be strongly correlated with a sudden increase in

the predicted parameter estimation error variance - in other words, whenever there

is a spike in the σK(k)/σK(k − wl) ratio; wl denotes the window length. We used
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Figure 24. Nonsmoothed and 90% fixed weights smoothed loop gain estimate bK
when moving window system ID algorithm is used. σα = 0.03 deg and
σq = 0.1108 deg / sec. K1 = 0.6.
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Figure 25. The effect of the fixed weights smoothing of estimated parameter on the
settling time when moving window system ID is used. σα = 0.03 deg
and σq = 0.1108 deg / sec. K1 = 0.6.
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0.1108 deg / sec. K1 = 0.6.

Table 6. The Percentage of K Estimates Falling Into the 1-Sigma Range.bK bK Inside 1-σ
Not smoothed 50.97%
70% Smoothed 52.64%
80% Smoothed 55.59%
90% Smoothed 61.02%

Adaptively Smoothed 65.90%

this insight to design an adaptive smoother, as specified in Eqs. (76) and (77) in

Chapter 4.

Figure 28 shows the relation between the unsmoothed parameter estimate bK,
adaptively smoothed parameter estimate bK and the adaptively adjusted weight λk

used in the adaptive parameter smoother. It indicates that λk ≈ 1, i.e., use the pre-
viously smoothed estimate bKsmooth(k−1), when there is high fluctuation in estimatedbK. When the fluctuation is low, λk ≈ 0, i.e., use the current estimate bK(k). The
adaptive smoother did function as we expect and adaptively reduce the fluctuation in
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ID is used. σα = 0.03 deg and σq = 0.1108 deg / sec. K1 = 0.6. (where
wl denotes the window length)
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Figure 28. Loop gain estimate and λk when moving window system ID and adap-
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K1 = 0.6.
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Figure 29. The effects of estimated parameter smoothing on the settling time
when moving window system ID is used. σα = 0.03 deg and σq =
0.1108 deg / sec. K1 = 0.6.
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Figure 30. Loop gain estimate bK and smoothed bKs when moving window system
identification, fixed weights smoother and adaptive smoother are used.
σα = 0.03 deg and σq = 0.1108 deg / sec. K1 = 0.6.

80



parameter estimate. Figures 29 and 30 show the parameter estimation performance

comparison with no smoother, a fixed-weights smoother, and an adaptive smoother

for bK, when the failure index is K1 = 0.6 at tf = 8 seconds. We can see that the

adaptive smoother, Eq. (76), not only yields the fastest identification time, but also

is more effective than a fixed-weights smoother. Table 6 shows the percentage of bK
falling inside the predicted 1σ bounds when no smoother, a fixed-weights smoother

and an adaptive smoother are used. We see that the adaptive smoother significantly

“helps” the parameter estimation algorithm.

7.4 Tracking Controller Performance

In the tracking control experiments, the fixed linear PI tracking controller de-

sign in Chapter 5 is exercised first. This is a fairly robust controller and it yields a

solid benchmark against which the adaptive and reconfigurable controller’s perfor-

mance is gauged. Next, the tracking performance of our adaptive and reconfigurable

control system is evaluated. The tracking performance when using the “exciting”

13-bit Barker code sequence pilot command is also discussed.

7.4.1 Fixed Proportional Controller Performance. In general, post-failure

tracking performance of the fixed proportional controller for the various reduced

open-loop gain values is similar to that of the PI controller. The post-failure tracking

performance of the proportional controller becomes unacceptable when the critical

1oop gain is reduced to K1 = 0.2. When the critical loop gain is further reduced,

tracking performance deteriorates rapidly as shown in Figures 31 to 34.

7.4.2 Fixed PI Controller Performance. Our fixed PI tracking controller

developed in Chapter 5 is, by design, fairly robust. In the simulation experiments,

at time t = 8 sec. into the flight, the open-loop gain K is reduced to K1 = 0.8,

K1 = 0.6, K1 = 0.2, K1 = 0.1 and K1 = 0.06. Although no discernible loss in

post-failure tracking performance is recorded for K1 = 0.8 in Figure 35 (due to the

81



0 2 4 6 8 10 12 14 16
-15

-10

-5

0

5

10

15
Short Period outputs for PR contr. & Failure K=0.8 at 8 sec

Time(sec)

O
ut

pu
t(

de
gr

ee
)

q command
α
q

Figure 31. Pitch rate q and angle of attack α responses when the fixed proportional
controller is used. σα = 0.03 deg and σq = 0.1108 deg / sec. K1 = 0.8.
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Figure 32. Pitch rate q and angle of attack α responses when the fixed proportional
controller is used. σα = 0.03 deg and σq = 0.1108 deg / sec. K1 = 0.4.
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Figure 33. Pitch rate q and angle of attack α responses when the fixed proportional
controller is used. σα = 0.03 deg and σq = 0.1108 deg / sec. K1 = 0.2.
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Figure 34. Pitch rate q and angle of attack α responses when the fixed proportional
controller is used. σα = 0.03 deg and σq = 0.1108 deg / sec. K1 = 0.1.
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Figure 35. Pitch rate q and angle of attack α responses when the fixed PI controller
is used. σα = 0.03 deg and σq = 0.1108 deg / sec. K1 = 0.8.

robustness of the fixed PI controller), the degradation in tracking performance is

pronounced for K1 = 0.2, as seen in Figure 38. Although the control system does

not become unstable until a degree of failure which corresponds to K1 = 0.08 - see,

e.g., Table 3 - the post-failure tracking performance of the fixed PI controller falls out

of acceptable limits before this point, approximately when the loop gain K1 ≤ 0.2
- see, e.g. Figure 38, where the results for K1 = 0.2 are shown. When the K value

further decreases to K1 = 0.1 and below, as shown in Figures 39 and 40, post-failure

tracking performance of the fixed PI controller deteriorates significantly and is not

acceptable. In both cases, when either the fixed PI or the proportional tracking

controller were used, very similar identification results were obtained.

7.4.3 Adaptive and Reconfigurable Control.

7.4.3.1 Expanding Window System Identification. Now, a “conven-

tional”, two-module, adaptive and reconfigurable controller is implemented. The
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Figure 36. Pitch rate q and angle of attack α responses when the fixed PI controller
is used. σα = 0.03 deg and σq = 0.1108 deg / sec. K1 = 0.6.
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Figure 37. Pitch rate q and angle of attack α responses when the fixed PI controller
is used. σα = 0.03 deg and σq = 0.1108 deg / sec. K1 = 0.4.
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Figure 38. Pitch rate q and angle of attack α responses when the fixed PI controller
is used. σα = 0.03 deg and σq = 0.1108 deg / sec. K1 = 0.2.
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Figure 39. Pitch rate q and angle of attack α responses when the fixed PI controller
is used. σα = 0.03 deg and σq = 0.1108 deg / sec. K1 = 0.1.
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Figure 40. Pitch rate q and angle of attack α responses when the fixed PI controller
is used. σα = 0.03 deg and σq = 0.1108 deg / sec. K1 = 0.06.

controller entails an expanding window system identification module and a variable

gain controller. When the expanding window-based system identification algorithm

is used to estimate the states α, q, and the open-loop gain parameter (K) for degrees

of failure of K1 = 0.8, K1 = 0.6, K1 = 0.2, K1 = 0.1 and K1 = 0.06, and no parame-

ter estimate smoothing filter is used, the tracking performance is shown in Figures 41

- 45. After the point of failure, a considerable error between the estimated pitch rate

and the commanded pitch rate develops. This is mainly due to the estimation lag

in the expanding window system identification module. However, the tracking per-

formance improves as time passes, and the expanding window system identification

algorithm settles on a good parameter estimate, and the pitch rate then tracks the

commanded pitch rate. When the open-loop gain dropped toK1 = 0.06 in Figure 42,

tracking at t ≈ 10 second is temporarily poor, because the parameter identification
delay is long, and the fixed PI tracking controller is only able to tolerate a failure of

K1 = 0.08 before the control system becomes unstable. However, after a temporary

lapse, the adaptive and reconfigurable controller affords a recovery at t ≈ 16 second.
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Figure 41. q and α responses when expanding window system identification al-
gorithm and reconfigurable control are used. σα = 0.03 deg and
σq = 0.1108 deg / sec . K1 = 0.8.
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Figure 42. q and α responses when expanding window system identification al-
gorithm and reconfigurable control are used. σα = 0.03 deg and
σq = 0.1108 deg / sec . K1 = 0.6.
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Figure 43. q and α responses when expanding window system identification al-
gorithm and reconfigurable control are used. σα = 0.03 deg and
σq = 0.1108 deg / sec . K1 = 0.2.
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Figure 44. q and α responses when expanding window system identification al-
gorithm and reconfigurable control are used. σα = 0.03 deg and
σq = 0.1108 deg / sec . K1 = 0.1.
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Figure 45. q and α responses when expanding window system identification al-
gorithm and reconfigurable control are used. σα = 0.03 deg and
σq = 0.1108 deg / sec . K1 = 0.06.

7.4.3.2 Moving-Window System Identification. The tracking perfor-

mance of the complete, three-module, adaptive and reconfigurable controller, using

the moving-window system identification algorithm, is shown in Figures 46 - 49. Af-

ter the failure, and when K1 = 0.8, only a small tracking error occurs between the

commanded pitch rate and the pitch rate output. As the degree of failure increases,

the tracking error increases too. However, the tracking performance is much better

than that of the fixed PI tracking controller, and the previously discussed two-module

adaptive tracking controller using an expanding window-based system identification

algorithm. Concerning the latter, the estimation lag is now reduced. This is ev-

ident when we compare Figures 45 and 49, where the open-loop gain dropped to

K1 = 0.06. In Figure 45 where the estimation lag was high, tracking immediately

after the failure was no longer acceptable because the fixed PI tracking controller is
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Figure 46. q and α response when moving window system ID algorithm & adaptive
smoother are used. σα = 0.03 deg and σq = 0.1108 deg / sec . K1 = 0.8.

only able to tolerate a failure of K1 = 0.08 before letting the control system become

unstable.

7.4.3.3 13-bit Barker Code Command. Figure 50 shows the track-

ing performance of the fixed PI controller when the dynamic 13-bit Barker code

sequence is used as reference command. Figures 51 and 52 illustrate the tracking

performance of our two and three-module adaptive and reconfigurable controller

using the expanding window system identification algorithm and moving-window

system identification algorithm, respectively, when the dynamic 13-bit Barker code

sequence is used as reference command, and the control surface loss is K1 = 0.6

and it occurs at tf = 6 seconds. The tracking performance of the moving-window

system identification algorithm is superior to that of the expanding window system

identification algorithm and is slightly better than the fixed PI controller’s; recall,

however, that the fixed PI controller cannot handle a severe failure, e.g., K1 = 0.2.
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Figure 47. q and α response when moving window system ID algorithm & adaptive
smoother are used. σα = 0.03 deg and σq = 0.1108 deg / sec . K1 = 0.6.
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Figure 48. q and α response when moving window system ID algorithm & adaptive
smoother are used. σα = 0.03 deg and σq = 0.1108 deg / sec . K1 = 0.2.
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Figure 49. q and α response when moving window system ID algorithm & adaptive
smoother are used. σα = 0.03 deg and σq = 0.1108 deg / sec . K1 = 0.06.
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Figure 50. q and α response when fixed PI controller & 13-bit Barker code input
signal are used. σα = 0.03 deg and σq = 0.1108 deg / sec . Failure at
t=6 sec. and K1 = 0.6.
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Figure 51. q and α response when expanding window system identification algo-
rithm & 13-bit Barker code input signal are used. σα = 0.03 deg and
σq = 0.1108 deg / sec . Failure at t=6 sec. and K1 = 0.6.
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Figure 52. q and α response when moving window system ID algorithm & 13-
bit Barker code input signal are used. σα = 0.03 deg and σq =
0.1108 deg / sec . Failure at t=6 sec. and K1 = 0.6.

94



7.5 SNR Effects

With the moving-window system identification algorithm, the accuracy of the

results strongly depends on the measurement’s Signal-to-Noise Ratio (SNR). This

is due to the short data window used to calculate the estimates. In the previous

section, a SNR of 38.9557dB (σα = 0.03 [deg] and σq = 0.1108 [deg/sec]) was used.

In this section several additional SNRs listed in Table 4 are experimented with in

order to analyze the SNR0s effect on the estimation and tracking performance.

Figures 53 to 57 show that, as the measurement’s Signal-to-Noise Ratio in-

creases, the accuracy of the parameter estimate increases, and the tracking perfor-

mance also increases. The fluctuations in the gain estimate, and bursting, caused by

instances of poor excitation, is significantly reduced at high SNRs.

7.6 Window Size Effects

The effect of the length of the data window on the estimation and tracking

performance of the system identification algorithm are investigated. We set the

window sizes wl used in the moving-window system identification algorithm at 50,

40, 30, 20, and 10, the post-failure open-loop gain at K1 = 0.6, and the Signal-to-

Noise Ratio of the measurement is SNR = 38.9557dB.

Figures 58 to 61, and Figure 54 show that a larger window size yields better

parameter estimates and consequently better tracking performance. Using longer

windows reduces the fluctuations in the parameter estimate, and bursting. However,

as shown in Figure 62, longer windows bring about a delay in the estimation of the

loop gain after the failure.

7.7 Unmodeled Dynamics Effects

7.7.1 Unmodeled Phugoid Dynamics. When we add the Phugoid dynamics

to our short period A/C model with the first-order actuator augmented dynamics -
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Figure 53. Smoothed bK and tracking performance when moving window system
ID algorithm and adaptive smoother are used. SNR = 25.5421dB
(σα = 0.03 deg and σq = 0.55534 deg / sec). Failure at t=8 sec. K1 =
0.6.
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Figure 54. Smoothed bK and tracking performance when moving window system
ID algorithm and adaptive smoother are used. SNR = 38.9557dB
(σα = 0.03 deg and σq = 0.1108 deg / sec). Failure at t=8 sec. K1 = 0.6.
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Figure 55. Smoothed bK and tracking performance when moving window system
ID algorithm and adaptive smoother are used. SNR = 40dB (σα =
0.0602 deg and σq = 0.0602 deg / sec). Failure at t=8 sec. K1 = 0.6.
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Figure 56. Smoothed bK and tracking performance when moving window system
ID algorithm and adaptive smoother are used. SNR = 47.4847dB
(σα = 0.03 deg and σq = 0.01108 deg / sec). Failure at t=8 sec. K1 =
0.6.
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Figure 57. Smoothed bK and tracking performance when moving window system
ID algorithm and adaptive smoother are used. SNR = 60dB (σα =
0.00602 deg and σq = 0.00602 deg / sec). Failure at t=8 sec. K1 = 0.6.
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Figure 58. Smoothed bK and tracking performance when moving window system
ID algorithm and adaptive smoother are used. Window size is 50,
σα = 0.03 deg and σq = 0.1108 deg / sec . Failure at t=8 sec. K1 = 0.6.
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Figure 59. Smoothed bK and tracking performance when moving window system
ID algorithm and adaptive smoother are used. Window size is 40,
σα = 0.03 deg and σq = 0.1108 deg / sec . Failure at t=8 sec. K1 = 0.6.
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Figure 60. Smoothed bK and tracking performance when moving window system
ID algorithm and adaptive smoother are used. Window size is 20,
σα = 0.03 deg and σq = 0.1108 deg / sec . Failure at t=8 sec. K1 = 0.6.
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Figure 61. Smoothed bK and tracking performance when moving window system
ID algorithm and adaptive smoother are used. Window size is 10,
σα = 0.03 deg and σq = 0.1108 deg / sec . Failure at t=8 sec. K1 = 0.6.
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see, e.g., Eq. (90) - the new augmented dynamics are

.
x = Ax+ bu

=



Zα Zq Zv Zθ Zδe

Mα Mq Mv Mθ Mδe

Xα Xq Xv Xθ Xδe

0 1 0 0 0

0 0 0 0 − 1
τ


x+



0

0

0

0

1
τ


δec (117)

where the state

x =



α

q

v

θ

δe


(118)
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The Z stability and control derivatives now are

Zα = −1.3433, Zq = 0.9946, Zv = 0, Zθ = −0.001, Zδe = −0.1525

the M stability and control derivatives now are

Mα = 3.5, Mq = −1.0521, Mv = −0.0003, Mθ = 0, Mδe = −24.3282

and the X stability and control derivatives are

Xα = 33.4778, Xq = −26.0592, Xv = −0.0119, Xθ = −32.1873, Xδe = 21.6603

The above fifth-order plant model is then the truth model used in the simulation,

with the same system identification algorithm, parameter estimate smoother and PI

tracking controller as used in the previous simulations. Thus, we have introduced

low frequency unmodeled dynamics.

Setting the post-failure open-loop gain at K1 = 0.6, window size used in the

moving-window system identification algorithm is 30, and the Signal-to-Noise Ratio

of the output states measurement is SNR = 38.9557dB. Figure 63 shows that when

we include the Phugoid dynamics into our plant, the estimation performance dete-

riorates somewhat, however, the tracking performance does not change significantly.

Thus, unmodeled low frequency dynamics are not so problematic.

7.7.2 Fourth-Order Actuator. We now exchange in the simulation the

first-order actuator previously used with the fourth-order actuator specified in Eq.

(91), but without the Phugoid dynamics. Thus, we have introduced high frequency

unmodeled dynamics. The estimation performance and tracking performance are

shown in Figure 64. The estimation performance is slightly better compared to

that when the first-order actuator is used. However, tracking performance degrades

significantly when the fourth-order actuator is used in the simulation experiment,
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Figure 63. Phugoid dynamics are included - q response and adaptively smoothedbK when moving window system ID algorithm and adaptive smoother
are used. σα = 0.03 deg and σq = 0.1108 deg / sec . K1 = 0.6.

107



and there is “ringing” when the reference command signal passes the peak value. The

latter introduces some “dither”, viz., excitation, which enhances the performance of

the system identification algorithm. Indeed, the system identification algorithm is

not exercised in the presence of high frequency unmodeled dynamics because in the

estimation algorithm we use the actual actuator deflection measurement. Thus, in

Figure 64, one clearly sees the beneficial effect of dither on system identification

performance.

When we change the control gain Kδe from −0.4 to −1.5 to eliminate the
“ringing”, the result is shown in Figure 65. The ringing is reduced, and the estimation

performance is not appreciably degraded. Note, however, the lag in tracking when

the fourth-order actuator is used. Thus, to account for the use of a fourth-order

actuator, we need to fine tune the PI controller gains to reduce the “ringing” effect

in tracking.

7.7.3 Unmodeled Phugoid and Fourth-Order Actuator Dynamics. We now

include in our simulation the Phugoid dynamics and use the fourth-order actua-

tor to assess their joint effects on identification and tracking performance. The

moving-window parameter identification algorithm and the adaptive smoother are

used. Figure 66 shows the estimation performance and the tracking performance

when the control gain Kδe remains −0.4. Now, compare Figure 66 to Figures 63
and 64. We can see that there is still some “ringing” when the fourth-order ac-

tuator is used, but the estimation performance is better than that when only the

Phugoid dynamics are included. Indeed, the inclusion of the fourth-order actuator

model improves the estimation performance and mitigates the bad influence of the

Phugoid.

When we change the control gain Kδe to −1.5, the results are shown in Figure
67. We can see that the “ringing” is reduced as expected, but the estimation perfor-

mance is slightly degraded. However, the estimation performance is still better than
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Figure 64. Smoothed bK and tracking performance when moving window system
ID algorithm, adaptive smoother and fourth-order actuator are used.
Kδe = −0.4. σα = 0.03 deg and σq = 0.1108 deg / sec . Failure at t=8
sec. for K1 = 0.6.
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Figure 65. Smoothed bK and tracking performance when moving window system
ID algorithm, adaptive smoother and fourth-order actuator are used.
Kδe = −1.5. σα = 0.03 deg and σq = 0.1108 deg / sec . K1 = 0.6.
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Figure 66. Smoothed bK and tracking performance when moving window system ID
algorithm, adaptive smoother, Phugoid dynamics and fourth-order ac-
tuator are used. Kδe = −0.4. σα = 0.03 deg and σq = 0.1108 deg / sec .
K1 = 0.6.

111



Table 7. Longitudinal Dynamics with PI Tracking Controller when modeling error
Malpha=5 and Kde=-0.4.

System Eigenvalues (Mα = 5, Kδe = −0.4)
Open-loop -20.0 -3.4325 1.0371 N/A

Closed-loop, K=1 -14.4995+15.4874j -14.4995-15.4874j -1.3857 -0.0107
Closed-loop, K=0.8 -14.5399+12.4700j -14.5399-12.4700j -1.3047 -0.0112
Closed-loop, K=0.4 -17.9041 -11.5671 -0.9100 -0.0142
Closed-loop, K=0.2 -24.3589 -5.7072 -0.2968 -0.0324
Closed-loop, K=0.15 -0.0374+0.0813j -0.0374-0.0813j -25.3846 -4.9360
Closed-loop, K=0.1 -26.3211 -4.3121 0.2097 0.0281

Table 8. Longitudinal Dynamics with PI Tracking Controller when modeling error
Malpha=5 and Kde=-1.5.
System Eigenvalues (Mα = 5, Kδe = −1.5)
Open-loop -20.0 -3.4325 1.0371 N/A

Closed-loop, K=1 -38.7367 -12.5252 -1.1212 -0.0123
Closed-loop, K=0.8 -41.6301 -9.7716 -0.9803 -0.0134
Closed-loop, K=0.4 -46.2408 -5.7282 -0.4012 -0.0252
Closed-loop, K=0.3 -0.0853+0.0353j -0.0853-0.0353j -47.2415 -4.9833
Closed-loop, K=0.25 -0.0085+0.0864j -0.0085-0.0864j -47.7250 -4.6534
Closed-loop, K=0.2 0.0777+0.0185j -0.0777-0.0185j -48.1982 -4.3526

that when only the Phugoid dynamics are included, but now there is a slight lag in

tracking.

7.7.4 Parameter Modeling Error. We now introduce modeling “error” in

the Mα stability derivative. Thus, in the simulation we set Mα = 5 after the failure.

Table 7 and 8 show the poles of the open-loop plant and the poles of the closed-

loop system when the fixed PI controller is used with Mα = 5. In the presence of

modeling error (Mα = 5), as the loop gain K is lowered from a value of 1 to a value

of K1 ≈ 0.1 (when Kδe = −0.4) and to a value of K1 ≈ 0.2 (when Kδe = −1.5),
the closed-loop system reverts to instability. As we recall from Section 6.2, without

parametric modeling error, the fixed PI controller can stabilize the open-loop plant

until K1 = 0.08. The inclusion of parameter modeling error degrades the stability

robustness of the flight control system.
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Figure 67. Smoothed bK and tracking performance when moving window system ID
algorithm, adaptive smoother, Phugoid dynamics and fourth-order ac-
tuator are used. Kδe = −1.5. σα = 0.03 deg and σq = 0.1108 deg / sec .
K1 = 0.6.
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Table 9. Estimation performance without/with Modeling Error.
Window
Length

Without Modeling
Error

With Modeling Error
after Failure

Before Failure After Failure Before Failure After Failure
Mα = 3.5 Mα = 3.5 Mα = 3.5 Mα = 5

% σKe/σK % σKe/σK % σKe/σK % σKe/σK

40 47.44% 1.0277 36.68% 2.2823 47.44% 1.0261 1.50% 16.2354
30 55.90% 1.0345 44.50% 1.4514 55.90% 1.0336 2.88% 10.2572
20 63.25% 0.8615 57.13% 1.1677 63.25% 0.8610 4.13% 5.9566
10 65.11% 0.8179 60.25% 0.9802 65.11% 0.8176 11.63% 2.7440
8 63.56% 0.9170 59.88% 0.9990 63.68% 0.9166 16.13% 2.7000
5 58.79% 1.3711 57.63% 1.1323 58.79% 1.3718 28.25% 1.7006

Table 9 show the performance of the system identification algorithm after the

failure in the presence of parametric modeling error. The percentage of the parameter

estimates bK falling inside the predicted 1σ bounds, and the ratio σKe/σK , are shown

for window sizes wl of 40, 30, 20, 10, 8, 5. Here σKe is the experimentally obtained

variance of the parameter estimation error, and σK is the average predicted variance

of the parameter estimation error:

σKe =

vuut 1

Ns

NsX
k=1

(Kk − bKk)2

and

σK =

vuut 1

Ns

NsX
k=1

σ2Kk

and where Ns is the number of samples in our experiments. Thus,

Ns =


1600− wl for 0 < t ≤ 16 second, Mα = 3.5, without modeling error

800− wl for 0 < t ≤ 8 second, Mα = 3.5, with modeling error

800 for 8 < t ≤ 16 second, Mα = 5, with modeling error

where wl is the moving-window length used in the system identification algorithm.

Figures 68 to 71 show the estimation and tracking performance when the

moving-window system identification algorithm and no smoothing filter is used, with-

out modeling error and with modeling error after the control surface failure. The
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change in Mα due to modeling error significantly degrades the estimation perfor-

mance. This is reflected in an increase in the parameter estimation error variance

and in the ratio σKe/σK 6= 1. Moreover, from Table 9, we can see that in the pres-

ence of parametric modeling error, the shorter the windows length is, the higher

the percentage of K estimates falling inside the predicted 1σ bound and the closer

the predicted parameter estimation error variance is to the experimentally obtained

parameter estimation error variance. In addition, the parameter estimation error

variance increases, which indicates that the parameter estimate needs to be heavily

smoothed before it is sent to the controller. Therefore, considering the estimation

and tracking performance trade off, the “optimal” choice of window size is 30.

7.7.5 Unmodeled Phugoid Dynamics, Fourth-Order Actuator, and Parameter

Modeling Error. We now include in our realistic simulation the Phugoid dynamics,

use the fourth-order actuator model, and allow for a post failure parameter mod-

eling error (Mα = 5). We investigate their cumulative effect on identification and

tracking performance. The moving-window parameter identification algorithm and

the adaptive smoother are used. The window size is 30, as discussed in the pervi-

ous section. Figures 72 and 73 show the estimation performance and the tracking

performance without and with the adaptive smoother, respectively, with the original

control gain Kδe = −0.4. Without the adaptive smoother, the effect of modeling
error on the estimation and tracking performance is very pronounced. Thus, the

adaptive smoother performs a crucial function in the presence of modeling error.

When we change the control gain Kδe to −1.5, the results are shown in Figures
74 and 75 with and without the adaptive smoother, respectively. The “ringing” is

now reduced, but, due to the change in the control gain Kδe , the estimation per-

formance is degraded. Without the adaptive smoother, the effect of modeling error

on the estimation and tracking performance is more severe than with the adaptive

smoother in place. Comparing Figures 75 and 67, we clearly see that the parametric

modeling error degraded both the estimation and the tracking performance.
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Figure 68. Parameter estimate bK and tracking performance when the moving win-
dow system ID algorithm is used without smoother. σα = 0.03 deg and
σq = 0.1108 deg / sec . K1 = 0.6. Window lengths are 40, 30 and 20.
No modeling error.
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Figure 69. Parameter estimate bK and tracking performance when the moving win-
dow system ID algorithm is used without smoother. σα = 0.03 deg and
σq = 0.1108 deg / sec . K1 = 0.6. Window lengths are 10, 8 and 5. No
modeling error.
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Figure 70. Parameter estimate bK and tracking performance when the moving win-
dow system ID algorithm is used without smoother. σα = 0.03 deg and
σq = 0.1108 deg / sec . K1 = 0.6. Window lengths are 40, 30 and 20.
With modeling error (Mα = 5) after failure.
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Figure 71. Parameter estimate bK and tracking performance when the moving win-
dow system ID algorithm is used without smoother. σα = 0.03 deg and
σq = 0.1108 deg / sec . K1 = 0.6. Window lengths are 10, 8 and 5. With
modeling error (Mα = 5) after failure.
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Figure 72. Parameter estimate bK and tracking performance. Moving window
system ID algorithm (wl = 30), without smoother. Phugoid dy-
namics, fourth-order actuator model and parametric modeling error
(Mα = 5 after failure) are included. Kδe = −0.4. σα = 0.03 deg and
σq = 0.1108 deg / sec . K1 = 0.6.
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Figure 73. Smoothed bK and tracking performance. Moving window system ID
algorithm (wl = 30), with adaptive smoother. Phugoid dynamics,
fourth-order actuator model and parametric modeling error (Mα = 5
after failure) are included. Kδe = −0.4. σα = 0.03 deg and σq =
0.1108 deg / sec . K1 = 0.6.
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Figures 77 to 79 show the tracking performance of the fixed PI controller, and

the three-module adaptive and reconfigurable controller (moving-window identifica-

tion algorithm with adaptive smoother), when the Phugoid dynamics, the fourth-

order actuator model, and the post failure modeling error (Mα = 5) are included. We

also set the control gain to the original Kδe = −0.4, and the control surface failure
index is K1 = 0.6, K1 = 0.4, K1 = 0.2. Before the failure, the tracking performance

of the fixed PI controller and the adaptive and reconfigurable controller are similar.

However, after the failure, the adaptive and reconfigurable controller outperforms

the fixed PI controller, in particular, in the severe failure case of K1 = 0.2, when the

fixed PI controller causes a departure.

Finally, Figure 76 shows the elevator deflection and deflection rate when the

fixed PI controller, and the three-module adaptive and reconfigurable controller are

used. Phugoid dynamics, the fourth-order actuator model, and the post failure pa-

rameter modeling error (Mα = 5) are included. The case when there is no parameter

modeling error is also shown (Mα = 3.5). The control gain is set to Kδe = −1.5.
Before the failure, the elevator deflection and deflection rate from the fixed PI con-

troller and the adaptive and reconfigurable controller are similar. After the failure

and in the presence of parameter modeling error, the elevator deflection is reason-

able (−6.46◦ < δe < 6.32
◦), however the elevator deflection rate after the failure and

when adaptive and reconfigurable control is used is ±65 deg/sec at t ≈ 10 sec. This
is due to the fact that the smoothed K estimate suddenly drops to bKsmooth ≈ 0 -
see, e.g., Figure 75. When there is no parameter modeling error after the failure, the

elevator deflection rate when the adaptive and reconfigurable controller is used is in

the range of ±24 deg/sec.

When we change the control gain Kδe to −1.5, the results are shown in Fig-
ures 80 to 82. The adaptive and reconfigurable controller outperforms the fixed PI

controller in all failure cases. In the case of a severe failure (K1 = 0.2), the adaptive
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and reconfigurable controller shows some lag in tracking, but the fixed PI controller

causes a departure.

7.7.6 Unmodeled Phugoid Dynamics, Fourth-Order Actuator, and Parameter

Modeling Error: Window Length Effect. We include the unmodeled Phugoid

dynamics, fourth-order actuator, and post failure parameter modeling error (Mα=5)

into our three-module adaptive and reconfigurable flight control system simulation.

The performance of the system identification algorithm is assessed when we set the

window size wl used in the moving-window system identification algorithm at 120,

100, 80, 60, 50, 40 and 30. The post-failure open-loop gain is set atK1 = 0.6, 0.4, and

0.2, and the Signal-to-Noise Ratio of the measurement is SNR = 38.9557dB. Figures

83 to 89 show the estimation and tracking performance in each case. A larger window

size yields better parameter estimates, but the tracking performance is reduced.

Indeed, using longer windows reduces the fluctuations in the parameter estimate, and

bursting. However, longer windows bring about a delay in the estimation of the loop

gain after the failure. From Table 10, we can see that in the presence of parametric

modeling error, the shorter the windows size is, the higher the percentage of K

estimates falling inside the predicted 1σ bound. At the same time, the parameter

estimation error variance increases, which indicates that the parameter estimate

needs to be heavily smoothed before it is sent to the controller. Therefore, when the

sampling rate is 100 Hz, and considering the estimation and tracking performance

trade off, the “optimal” choice of window size for inner loop flight control is wl = 30.

For reference purpose, Table 11 is reproduced for the case when there are no modeling

error. The adverse effect on estimation performance of modeling error is clearly

visible.

7.7.7 Discussion. From the simulation experiments, we conclude that

the unmodeled dynamics adversely affect the system identification algorithm. The

Phugoid dynamics will degrade the estimation performance, but preserve the track-
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Figure 74. Parameter estimate bK and tracking performance. Moving window
system ID algorithm (wl = 30), without smoother. Phugoid dy-
namics, fourth-order actuator model and parametric modeling error
(Mα = 5 after failure) are included. Kδe = −1.5. σα = 0.03 deg and
σq = 0.1108 deg / sec . K1 = 0.6.
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Figure 75. Smoothed bK and tracking performance. Moving window system ID
algorithm (wl = 30), with adaptive sommther. Phugoid dynamics,
fourth-order actuator model and parametric modeling error (Mα = 5
after failure) are included. Kδe = −1.5. σα = 0.03 deg and σq =
0.1108 deg / sec . K1 = 0.6.
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Figure 76. Comparison of the elevator deflection and deflection rate when the fixed
PI controller and the adaptive and reconfigurable controller are used.
Phugoid dynamics, fourth-order actuator model and with and without
parametric modeling error (Mα = 5 after failure) included. Kδe = −1.5.
σα = 0.03 deg and σq = 0.1108 deg / sec . K1 = 0.6.
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Figure 77. Comparison of the tracking performance of the fixed PI controller
and the adaptive and reconfigurable controller. Phugoid dynamics,
fourth-order actuator model and parametric modeling error (Mα = 5
after failure) are included. Kδe = −0.4. σα = 0.03 deg and σq =
0.1108 deg / sec . K1 = 0.6.
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Figure 78. Comparison of the tracking performance of the fixed PI controller
and the adaptive and reconfigurable controller. Phugoid dynamics,
fourth-order actuator model and parametric modeling error (Mα = 5
after failure) are included. Kδe = −0.4. σα = 0.03 deg and σq =
0.1108 deg / sec . K1 = 0.4.
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Figure 79. Comparison of the tracking performance of the fixed PI controller
and the adaptive and reconfigurable controller. Phugoid dynamics,
fourth-order actuator model and parametric modeling error (Mα = 5
after failure) are included. Kδe = −0.4. σα = 0.03 deg and σq =
0.1108 deg / sec . K1 = 0.2.

0 2 4 6 8 10 12 14 16
-15

-10

-5

0

5

10

15

q output when Phugoid dyns., 4th-order actu., modeling err. are included. Failure K=0.6 at 8sec K δe
=-1.5

Time (sec)

q
O

ut
pu

t(
de

g/
se

c)

Reference command
From Fixed PI Controller
From Moving Win. ID Algo with Smoother

Figure 80. Comparison of the tracking performance of the fixed PI controller
and the adaptive and reconfigurable controller. Phugoid dynamics,
fourth-order actuator model and parametric modeling error (Mα = 5
after failure) are included. Kδe = −1.5. σα = 0.03 deg and σq =
0.1108 deg / sec . K1 = 0.6.

128



0 2 4 6 8 10 12 14 16
-15

-10

-5

0

5

10

15

q output when Phugoid dyns., 4th-order actu., modeling err. are included. Failure K=0.4 at 8sec K δe
=-1.5

Time (sec)

q
O

ut
pu

t(
de

g/
se

c)

Reference command
From Fixed PI Controller
From Moving Win. ID Algo with Smoother

Figure 81. Comparison of the tracking performance of the fixed PI controller
and the adaptive and reconfigurable controller. Phugoid dynamics,
fourth-order actuator model and parametric modeling error (Mα = 5
after failure) are included. Kδe = −1.5. σα = 0.03 deg and σq =
0.1108 deg / sec . K1 = 0.4.
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Figure 82. Comparison of the tracking performance of the fixed PI controller
and the adaptive and reconfigurable controller. Phugoid dynamics,
fourth-order actuator model and parametric modeling error (Mα = 5
after failure) are included. Kδe = −1.5. σα = 0.03 deg and σq =
0.1108 deg / sec . K1 = 0.2.
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Figure 83. Moving window system ID algorithm (wl = 120), with adaptive
smoother. Phugoid dynamics, fourth-order actuator model and para-
metric modeling error (Mα = 5 after failure) are included. Kδe = −1.5.
σα = 0.03 deg and σq = 0.1108 deg / sec . K1 = 0.6, 0.4 and 0.2.
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Figure 84. Moving window system ID algorithm (wl = 100), with adaptive
smoother. Phugoid dynamics, fourth-order actuator model and para-
metric modeling error (Mα = 5 after failure) are included. Kδe = −1.5.
σα = 0.03 deg and σq = 0.1108 deg / sec . K1 = 0.6, 0.4 and 0.2.
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Figure 85. Moving window system ID algorithm (wl = 80), with adaptive
smoother. Phugoid dynamics, fourth-order actuator model and para-
metric modeling error (Mα = 5 after failure) are included. Kδe = −1.5.
σα = 0.03 deg and σq = 0.1108 deg / sec . K1 = 0.6, 0.4 and 0.2.
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Figure 86. Moving window system ID algorithm (wl = 60), with adaptive
smoother. Phugoid dynamics, fourth-order actuator model and para-
metric modeling error (Mα = 5 after failure) are included. Kδe = −1.5.
σα = 0.03 deg and σq = 0.1108 deg / sec . K1 = 0.6, 0.4 and 0.2.
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Figure 87. Moving window system ID algorithm (wl = 50), with adaptive
smoother. Phugoid dynamics, fourth-order actuator model and para-
metric modeling error (Mα = 5 after failure) are included. Kδe = −1.5.
σα = 0.03 deg and σq = 0.1108 deg / sec . K1 = 0.6, 0.4 and 0.2.
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Figure 88. Moving window system ID algorithm (wl = 40), with adaptive
smoother. Phugoid dynamics, fourth-order actuator model and para-
metric modeling error (Mα = 5 after failure) are included. Kδe = −1.5.
σα = 0.03 deg and σq = 0.1108 deg / sec . K1 = 0.6, 0.4 and 0.2.
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Figure 89. Moving window system ID algorithm (wl = 30), with adaptive
smoother. Phugoid dynamics, fourth-order actuator model and para-
metric modeling error (Mα = 5 after failure) are included. Kδe = −1.5.
σα = 0.03 deg and σq = 0.1108 deg / sec . K1 = 0.6, 0.4 and 0.2.
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Table 10. Estimation performance in the presence of Phugoid dynamics, 4th-order
actuator and Parameter Modeling Error.

Window
Length

Without Modeling Error
after Failure

With Modeling Error
after Failure

Before Failure After Failure Before Failure After Failure
Mα = 3.5 Mα = 3.5 Mα = 3.5 Mα = 5

% σKe/σK % σKe/σK % σKe/σK % σKe/σK

120 K1 = 0.6 8.22% 9.8170 0.50% 36.0085 8.22% 9.8156 0.50% 77.6210
120 K1 = 0.4 8.22% 11.5906 0.25% 57.9225 8.22% 11.5887 0.50% 68.3467
120 K1 = 0.2 8.22% 13.8252 0.63% 83.5609 8.22% 13.8230 0.50% 73.8257

100 K1 = 0.6 12.41% 8.0224 0.50% 29.5165 12.41% 8.0159 0.50% 70.6330
100 K1 = 0.4 12.41% 9.1891 0.25% 48.3235 12.41% 9.1811 0.50% 58.0828
100 K1 = 0.2 12.41% 10.5631 0.63% 72.5651 12.41% 10.5541 0.63% 63.5088

80 K1 = 0.6 15.53% 6.3104 0.37% 20.1849 15.53% 6.3061 0.50% 60.7597
80 K1 = 0.4 15.53% 6.9205 0.25% 33.9788 15.53% 6.9153 0.88% 52.6956
80 K1 = 0.2 15.53% 7.6313 0.88% 65.5666 15.53% 7.6254 0.75% 59.2076

60 K1 = 0.6 15.79% 4.1639 0.50% 11.6378 15.79% 4.1623 1.13% 41.1995
60 K1 = 0.4 15.79% 4.3869 0.50% 16.8761 15.79% 4.3848 0.88% 40.7393
60 K1 = 0.2 15.79% 4.6597 0.63% 45.0475 15.79% 4.6572 1.38% 42.5600

50 K1 = 0.6 20.11% 3.3352 0.88% 8.3933 20.11% 3.3340 1.13% 31.4682
50 K1 = 0.4 20.11% 3.4691 0.37% 11.0310 20.11% 3.4677 1.38% 31.5668
50 K1 = 0.2 20.11% 3.6361 0.88% 33.4663 20.11% 3.6343 1.25% 32.6856

40 K1 = 0.6 20.63% 2.4933 2.88% 5.6118 20.63% 2.4923 1.25% 22.1051
40 K1 = 0.4 20.63% 2.5778 1.38% 6.8140 20.63% 2.5765 2.00% 23.1365
40 K1 = 0.2 20.63% 2.6847 1.75% 21.6335 20.63% 2.6832 2.50% 22.2451

30 K1 = 0.6 29.18% 1.7022 6.63% 3.7504 29.18% 1.7013 2.13% 13.6519
30 K1 = 0.4 29.18% 1.7489 4.37% 4.1107 29.18% 1.7476 2.25% 15.2254
30 K1 = 0.2 29.18% 1.8082 4.50% 11.8786 29.18% 1.8066 3.38% 14.6092

Table 11. Estimation performance without Phugoid dynamics, 4th-order actiator
and Parameter Modeling Error.

Window
Length Without Unmodeled Dynamics

Before Failure After Failure
% σKe/σK % σKe/σK

120 K1 = 0.6 5.43% 7.1464 5.36% 27.1328
120 K1 = 0.4 5.43% 9.9099 5.37% 50.8629
120 K1 = 0.2 5.43% 12.8429 11.75% 78.3058

100 K1 = 0.6 8.99% 4.8353 6.25% 17.2179
100 K1 = 0.4 8.99% 6.4735 4.88% 35.0398
100 K1 = 0.2 8.99% 8.2287 10.50% 56.8502

80 K1 = 0.6 18.72% 3.0250 9.75% 9.7578
80 K1 = 0.4 18.72% 3.9587 7.50% 23.5718
80 K1 = 0.2 18.72% 4.9645 19.00% 49.9900

60 K1 = 0.6 26.45% 1.7476 21.00% 4.7322
60 K1 = 0.4 26.45% 2.2178 19.13% 10.7741
60 K1 = 0.2 26.45% 2.7374 33.37% 36.5729

50 K1 = 0.6 38.62% 1.2928 31.75% 3.0876
50 K1 = 0.4 38.62% 1.6003 30.38% 6.4874
50 K1 = 0.2 38.62% 1.9460 46.00% 27.7534

40 K1 = 0.6 48.49% 0.9132 42.25% 1.9553
40 K1 = 0.4 48.49% 1.0884 41.63% 3.6867
40 K1 = 0.2 48.49% 1.2927 52.12% 18.6363

30 K1 = 0.6 57.33% 0.8237 49.38% 1.5597
30 K1 = 0.4 57.33% 0.8901 52.88% 1.9257
30 K1 = 0.2 57.33% 0.9746 53.63% 10.7669
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ing performance. The fourth-order actuator will degrade the tracking performance,

but enhance the estimation performance. Using both the Phugoid dynamics and the

fourth-order actuator model in our simulation experiment, clearly illustrates the in-

terplay between the various unmodeled dynamics effects on estimation and tracking

performance. However, the parametric modeling error not only impairs the estima-

tion performance of the moving window system identification algorithm, but it also

degrades the tracking performance.

In the presence of parametric modeling error, the reliability of the system

identification algorithm is a major concern. Thus, the estimator’s performance is

gauged to a large extent by the ratio σKe/σK, where σKe is the experimentally

recorded parameter estimation error variance, and σK is the average of the predicted

parameter estimation error variance. Unfortunately, the latter is close to 1 when the

parameter estimation error variance is large. This, in turn, is the motivation for

using a parameter estimate smoother before using the parameter estimate to adjust

the controller. The latter invariably introduces an estimation lag, which however

is minimized when an adaptive parameter estimate smoother is used. With the

adaptive smoother, the estimation performance is enhanced, and so is the tracking

performance.

Most importantly, the benefit of adaptive and reconfigurable control is amply

illustrated in Figure 82. It is apparent that in the case of a sever failure, with a

fixed PI controller a departure is on hand, whereas the adaptive and reconfigurable

controller yields acceptable tracking performance.
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VIII. Conclusion and Recommendations

8.1 Conclusion

An adaptive and reconfigurable flight control system is developed. The novel

three-module controller consists of 1) a system identification module, 2) a parame-

ter estimate smoother, and 3) a robust proportional and integral compensator for

tracking control.

Two basic system identification algorithms were described that were useful

for the determination of the unknown parameters of a dynamical system. We are

particularly interested in on-line system identification for adaptive and reconfigurable

flight control. We discussed modeling error, disturbances, and the importance of

not over-modeling. First, a frequency domain system identification approach for

estimating the unknown parameters of an nth order continuous-time SISO system

was discussed. Second, an estimation algorithm was also given when measurement

noise was taken into account in the modeling of the dynamical system. Because

of measurement noise, careful stochastic modeling was used and a modified Least

Squares algorithm was developed. It was shown how the effect of the noise can be

represented as a weighting matrix, R, in the Least Squares algorithm, and, when

applied to the least squares algorithm, it provides accurate parameter estimates.

A new system identification algorithm was developed to identify the plant’s

control matrix, viz., the plant’s open-loop gain, K. We allow for measurement

noise, which is injected into the α (angle of attack) and q (pitch rate) channels

and propagates through the feedback control system. The system identification

algorithm is akin to a Kalman filter and provides estimates of the states, α and

q, and the critical open-loop gain plant parameter. The Kalman equations were

manipulated so that the loop gain can be estimated and explicit formulae for the

loop-gain estimate and the predicted estimation error variance were derived. The

rigorous system identification algorithm operates in the presence of measurement
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noise and provides an unbiased loop gain parameter estimate and a reliable predicted

parameter estimation error variance. On-line operation is achieved, small samples

are used, and no human intervention is required. The algorithm is concisely stated

in Theorem 1.

High levels of measurement noise and poor excitation increase the parameter

estimation error variance and this causes the parameter estimate to fluctuate as we

move fromwindow to window. An adaptive parameter estimate smoother reduces the

fluctuations automatically in the plant gain estimate used in the “on-line designed”

compensator. This improves control performance and reduces bursting, caused by

instances of poor excitation. The adaptive parameter estimate smoother uses all

the available information on the plant parameter provided by the upstream on-line

system identification module and hence the lag, and the error in the plant parameter

estimate calculated by the smoother and sent to the compensator, is minimized.

Indeed, the role of the parameter estimate smoother is : 1) to reduce the inevitable

fluctuations in the parameter estimate prior to using the latter in the downstream

on-line controller synthesis algorithm, and 2) to address the ill effects of modeling

error and, in particular parametric modeling error, on the performance of the system

identification algorithm; the latter are an additional cause of large fluctuations in

the parameter estimate as we move from window to window, and to make matters

worse, the parameter estimation error prediction is then not reliable.

Moreover, a model based robust PI tracking controller using full state feedback

was synthesized. The method used to augment the dynamics to include integral ac-

tion in a state space formulation was introduced, and the appropriate tracking control

law was derived. The robust PI tracking controller provided the performance bench-

mark against which the performance of our adaptive and reconfigurable controller

was gauged.

Extensive simulations were performed to validate the novel adaptive and re-

configurable flight control system. First, the performance of our on-line system iden-
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tification algorithm was thoroughly investigated. The algorithm was tested in the

presence of the fixed PI controller. The expanding horizon Kalman estimates were

compared to the estimates from the moving-window algorithm. The performance

of both methods was analyzed and the methods were compared for their ability to

identify a failure quickly, viz., a loss of control surface area.

When the fast moving-window system identification was implemented, spots

of poorer estimation performance, manifested as spikes in the parameter estimate,

were observed at time instants where the pilot’s reference signal peaks. To help

correct this, a fixed-weights low-pass filter (smoothing module) for the parameter

estimate was initially tested for different levels of smoothing action. The fixed-

weights parameter estimate filter introduces a lag into the estimation process. To

address this problem, an adaptive smoother was developed to reduce the fluctuation

automatically in the parameter estimate and the estimation lag, and it was shown

to outperform the fixed-weights smoother. Moreover, the bursting phenomenon is

automatically mitigated. When the window size is increased, the estimate’s fluctua-

tions decreased. However, a shorter window is able to detect a failure faster than a

longer window, which is most desirable in reconfigurable control.

The pilot-like 13-bit Barker code pitch rate command sequence excitation was

also used in the simulation experiments in a dynamic tracking scenario and the

estimation performance of our moving-window system identification algorithm was

evaluated. The moving-window system identification algorithm preforms very well.

Indeed, the input signal strongly affects the estimation performance of the system

identification algorithm - as opposed to classical linear state estimation, i.e., Kalman

filtering.

The effects of measurement’s Signal to Noise Ratio was investigated. When

measurement’s SNR increases, the accuracy of the parameter estimate increases,

and the tracking performance also increases. The fluctuations in the gain estimate,
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and bursting, caused by instances of poor excitation is reduced significantly in high

SNR.

The choice of window length for moving-window system identification algo-

rithm deeply affects the performance. Using longer window lengths can reduce the

fluctuations in parameter estimate, and bursting, and yield better parameter esti-

mates and better tracking performance.

Attention was also given to unmodeled dynamics effects. Simulations includ-

ing unmodeled Phugoid dynamics, a fourth-order actuator model, and parametric

error, were performed. The unmodeled Phugoid dynamics degrade the estimation

performance, and the fourth-order actuator unmodeled dynamics reduce the tracking

performance. Including both, gives similar tracking performance as with the fourth-

order actuator model only, but better estimation performance than with Phugoid

dynamics only. However, parametric modeling error significantly degrades the esti-

mation and tracking performance of the moving-window system identification algo-

rithm and is the driving force for using a parameter estimate smoothing module.

In summary, in the novel three-module adaptive and reconfigurable controller,

the reciprocal of the estimated loop gain derived from the system identification

algorithm and processed by the smoothing module is used on-line to adjust the

compensator, to account for the failure, and thus recover performance. The tracking

performance of the complete adaptive and reconfigurable control system is shown

to be superior to the tracking performance of the robust, but fixed, PI tracking

controller, in particular, in the case of a severe failure.

The adaptive and reconfigurable controller design methodology developed in

this dissertation is illustrated in a flight control context. However, this development

is applicable to a broad range of control problems.
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8.2 Contributions

1. Developed three-module adaptive and reconfigurable controller which includes

an adaptive parameter estimate smoother. Improves estimation performance

and combats bursting phenomenon.

2. Established the parameters for the optimal operation of the system identifica-

tion module, viz., the sampling rate and the window length, and experimentally

investigated the SNR effect.

3. Gave attention to the design of a robust tracking controller which accommo-

dates a control surface loss.

4. Developed remedial action for the accommodation of modeling errors in indi-

rect adaptive control; this includes low frequency unmodeled dynamics, high

frequency unmodeled dynamics, and parametric modeling error.

8.3 Recommendations for Future Research

1. This dissertation presented only the single input (pitch rate command) of the

F-16 class aircraft. The three-module adaptive and reconfigurable controller

developed in this dissertation should be applied to multiple-input signals to

test it’s ability. One can also create a scenario where the B matrix is changed

due to structural damage.

2. To simplify the development of the three-module adaptive and reconfigurable

controller, this dissertation deal with the measurement’s noise only. Process

noise may be included in the model to give a great insight on how this controller

is performing.

3. The system identification module developed in this dissertation to estimate the

states and the open-loop gain only. The results of the experiments indicated

that the parameter modeling error (Mα) indeed affected the performance of

the system identification module. We mitigated the bad effects by using the
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adaptive smoother and modifying the control gain (Kδe). One could develop

another smoothing filter and fine tune the PI controller to improve the per-

formance of the system identification module when more modeling errors are

included. One could even modify the system identification module to also

estimate the stability derivatives.
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